| Overall Statistics |
|
Total Orders
1555
Average Win
0.40%
Average Loss
-0.46%
Compounding Annual Return
8.981%
Drawdown
52.500%
Expectancy
0.524
Start Equity
100000
End Equity
891502.05
Net Profit
791.502%
Sharpe Ratio
0.34
Sortino Ratio
0.356
Probabilistic Sharpe Ratio
0.083%
Loss Rate
19%
Win Rate
81%
Profit-Loss Ratio
0.88
Alpha
0.013
Beta
0.874
Annual Standard Deviation
0.146
Annual Variance
0.021
Information Ratio
0.165
Tracking Error
0.047
Treynor Ratio
0.057
Total Fees
$209.02
Estimated Strategy Capacity
$220000000.00
Lowest Capacity Asset
CED RWTPESR2XAAT
Portfolio Turnover
0.16%
|
# https://quantpedia.com/strategies/net-payout-yield-effect/
#
# The investment universe consists of all stocks on NYSE, AMEX, and NASDAQ. At the end of June of each year t, ten portfolios are formed based on ranked
# values net payout yield. The net payout yield is the ratio of dividends plus repurchases minus common share issuances in year t to year-end market
# capitalization. There are two measures of payout yield, one based on the statement of cash flows, the other based on the change in Treasury stocks.
# For the net payout yield, we use the cash flow-based measure of repurchases. The portfolio with the highest net payout yield is bought and held for
# one year, after which it is rebalanced.
#
# QC implementation changes:
# - Instead of all listed stocks, we selected 500 most liquid stocks traded on NYSE, AMEX, or NASDAQ.
from AlgorithmImports import *
import numpy as np
class NetPayoutYieldEffect(QCAlgorithm):
def Initialize(self) -> None:
self.SetStartDate(2000, 1, 1)
self.SetCash(100_000)
self.UniverseSettings.Leverage = 5
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.FundamentalFunction)
self.Settings.MinimumOrderMarginPortfolioPercentage = 0.0
self.settings.daily_precise_end_time = False
# Fundamental Filter Parameters
self.exchange_codes: List[str] = ['NYS', 'NAS', 'ASE']
self.fundamental_count: int = 500
self.quantile: int = 10
self.long_symbols: List[Symbol] = []
self.rebalancing_month: int = 6
self.selection_flag: bool = True
self.exchange: Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol
self.Schedule.On(self.DateRules.MonthEnd(self.exchange),
self.TimeRules.AfterMarketOpen(self.exchange),
self.Selection)
def FundamentalFunction(self, fundamental: List[Fundamental]) -> List[Symbol]:
if not self.selection_flag:
return Universe.Unchanged
filtered: List[Fundamental] = [f for f in fundamental if f.HasFundamentalData
and f.SecurityReference.ExchangeId in self.exchange_codes
and not np.isnan(f.MarketCap)
and f.MarketCap !=0
and not np.isnan(f.ValuationRatios.TotalYield)
and f.ValuationRatios.TotalYield != 0
and not np.isnan(f.FinancialStatements.CashFlowStatement.CommonStockIssuance.TwelveMonths)
and f.FinancialStatements.CashFlowStatement.CommonStockIssuance.TwelveMonths != 0]
top_by_dollar_volume: List[Fundamental] = sorted(filtered,
key=lambda x: x.DollarVolume,
reverse=True)[:self.fundamental_count]
payout_yield = lambda x: ((x.ValuationRatios.TotalYield * (x.MarketCap)) - \
(x.FinancialStatements.CashFlowStatement.CommonStockIssuance.TwelveMonths / (x.MarketCap)))
sorted_by_payout: List[Fundamental] = sorted(top_by_dollar_volume, key = payout_yield, reverse=True)
if len(sorted_by_payout) >= self.quantile:
quantile: int = int(len(sorted_by_payout) / self.quantile)
self.long_symbols = [x.Symbol for x in sorted_by_payout[:quantile]]
return self.long_symbols
def OnData(self, slice: Slice) -> None:
if not self.selection_flag:
return
self.selection_flag = False
# Trade Execution
portfolio: List[PortfolioTarget] = [PortfolioTarget(symbol, 1 / len(self.long_symbols))
for symbol in self.long_symbols
if slice.ContainsKey(symbol) and slice[symbol] is not None]
self.SetHoldings(portfolio, True)
self.long_symbols.clear()
def Selection(self) -> None:
if self.Time.month == self.rebalancing_month:
self.selection_flag = True
def OnSecuritiesChanged(self, changes: SecurityChanges) -> None:
for security in changes.AddedSecurities:
security.SetFeeModel(CustomFeeModel())
# Custom fee model
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters: OrderFeeParameters) -> OrderFee:
fee: float = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))