| Overall Statistics |
|
Total Orders
7821
Average Win
1.22%
Average Loss
-1.04%
Compounding Annual Return
-3.156%
Drawdown
66.800%
Expectancy
0.044
Start Equity
100000
End Equity
44238.24
Net Profit
-55.762%
Sharpe Ratio
-0.347
Sortino Ratio
-0.335
Probabilistic Sharpe Ratio
0.000%
Loss Rate
52%
Win Rate
48%
Profit-Loss Ratio
1.17
Alpha
-0.04
Beta
0.024
Annual Standard Deviation
0.111
Annual Variance
0.012
Information Ratio
-0.421
Tracking Error
0.192
Treynor Ratio
-1.607
Total Fees
$8467.46
Estimated Strategy Capacity
$0
Lowest Capacity Asset
ICE_WT1.QuantpediaFutures 2S
Portfolio Turnover
27.23%
|
# https://quantpedia.com/strategies/trading-wti-brent-spread/
#
# A 20-day moving average of WTI/Brent spread is calculated each day. If the current spread value is above SMA 20 then we enter a short position
# in the spread on close (betting that the spread will decrease to the fair value represented by SMA 20). The trade is closed at the close of the
# trading day when the spread crosses below fair value. If the current spread value is below SMA 20 then we enter a long position betting that
# the spread will increase and the trade is closed at the close of the trading day when the spread crosses above fair value.
#region imports
from AlgorithmImports import *
#endregion
class WTIBRENTSpread(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
self.symbols = [
"ICE_WT1", # WTI Crude Futures, Continuous Contract
"ICE_B1" # Brent Crude Oil Futures, Continuous Contract
]
self.spread = RollingWindow[float](20)
for symbol in self.symbols:
data = self.AddData(QuantpediaFutures, symbol, Resolution.Daily)
data.SetLeverage(5)
data.SetFeeModel(CustomFeeModel())
def OnData(self, data):
symbol1 = self.Symbol(self.symbols[0])
symbol2 = self.Symbol(self.symbols[1])
if symbol1 in data.Keys and symbol2 in data.Keys and data[symbol1] and data[symbol2]:
price1 = data[symbol1].Price
price2 = data[symbol2].Price
if price1 != 0 and price2 != 0:
spread = price1 - price2
self.spread.Add(spread)
# MA calculation.
if self.spread.IsReady:
if all([self.securities[symbol].get_last_data() and self.time.date() < QuantpediaFutures.get_last_update_date()[symbol] for symbol in [symbol1, symbol2]]):
spreads = [x for x in self.spread]
spread_ma20 = sum(spreads) / len(spreads)
current_spread = spreads[0]
if current_spread > spread_ma20:
self.SetHoldings(symbol1, -1)
self.SetHoldings(symbol2, 1)
elif current_spread < spread_ma20:
self.SetHoldings(symbol1, 1)
self.SetHoldings(symbol2, -1)
else:
self.Liquidate()
# Quantpedia data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaFutures(PythonData):
_last_update_date:Dict[Symbol, datetime.date] = {}
@staticmethod
def get_last_update_date() -> Dict[Symbol, datetime.date]:
return QuantpediaFutures._last_update_date
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaFutures()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(';')
data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1)
data['back_adjusted'] = float(split[1])
data['spliced'] = float(split[2])
data.Value = float(split[1])
if config.Symbol not in QuantpediaFutures._last_update_date:
QuantpediaFutures._last_update_date[config.Symbol] = datetime(1,1,1).date()
if data.Time.date() > QuantpediaFutures._last_update_date[config.Symbol]:
QuantpediaFutures._last_update_date[config.Symbol] = data.Time.date()
return data
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))