| Overall Statistics |
|
Total Orders
146
Average Win
0.60%
Average Loss
-1.04%
Compounding Annual Return
0.775%
Drawdown
39.400%
Expectancy
-0.064
Start Equity
100000
End Equity
121692.34
Net Profit
21.692%
Sharpe Ratio
-0.332
Sortino Ratio
-0.391
Probabilistic Sharpe Ratio
0.000%
Loss Rate
41%
Win Rate
59%
Profit-Loss Ratio
0.58
Alpha
-0.018
Beta
0.029
Annual Standard Deviation
0.049
Annual Variance
0.002
Information Ratio
-0.358
Tracking Error
0.163
Treynor Ratio
-0.563
Total Fees
$38.61
Estimated Strategy Capacity
$0
Lowest Capacity Asset
CME_EC1.QuantpediaFutures 2S
Portfolio Turnover
0.08%
|
#region imports
from AlgorithmImports import *
from dateutil.relativedelta import relativedelta
#endregion
# Custom fee model
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))
# Quandl "value" data
class QuandlValue(PythonQuandl):
def __init__(self):
self.ValueColumnName = 'Value'
# Quantpedia data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaFutures(PythonData):
_last_update_date:Dict[str, datetime.date] = {}
@staticmethod
def get_last_update_date() -> Dict[str, datetime.date]:
return QuantpediaFutures._last_update_date
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaFutures()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(';')
data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1)
data['back_adjusted'] = float(split[1])
data['spliced'] = float(split[2])
data.Value = float(split[1])
# store last update date
if config.Symbol.Value not in QuantpediaFutures._last_update_date:
QuantpediaFutures._last_update_date[config.Symbol.Value] = datetime(1,1,1).date()
if data.Time.date() > QuantpediaFutures._last_update_date[config.Symbol.Value]:
QuantpediaFutures._last_update_date[config.Symbol.Value] = data.Time.date()
return data
# source: https://data.oecd.org/conversion/purchasing-power-parities-ppp.htm
class PPPData(PythonData):
_last_update_date:Dict[str, datetime.date] = {}
@staticmethod
def get_last_update_date() -> Dict[str, datetime.date]:
return PPPData._last_update_date
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource(f'data.quantpedia.com/backtesting_data/economic/ppp/{config.Symbol.Value}.csv', SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config, line, date, isLiveMode):
data = PPPData()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(';')
# Parse the CSV file's columns into the custom data class
data.Time = datetime.strptime(split[0], "%Y-%m-%d") + relativedelta(months=2)
data.Value = float(split[1])
# store last update date
if config.Symbol.Value not in PPPData._last_update_date:
PPPData._last_update_date[config.Symbol.Value] = datetime(1,1,1).date()
if data.Time.date() > PPPData._last_update_date[config.Symbol.Value]:
PPPData._last_update_date[config.Symbol.Value] = data.Time.date()
return data
# https://quantpedia.com/strategies/currency-value-factor-ppp-strategy/
#
# Create an investment universe consisting of several currencies (10-20). Use the latest OECD Purchasing Power Parity figure to assess
# the fair value of each currency versus USD in the month of publishing and then use monthly CPI changes and exchange rate changes to
# create fair PPP value for the month prior to the current month. Go long three currencies that are the most undervalued (lowest PPP
# fair value figure) and go short three currencies that are the most overvalued (highest PPP fair value figure). Invest cash not used
# as margin on overnight rates. Rebalance quarterly or monthly.
#
# QC implementation changes:
# - Yearly rebalance instead of quarterly is performed.
import data_tools
from AlgorithmImports import *
from typing import Dict, List
class CurrencyValueFactorPPPStrategy(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
self.leverage:int = 3
self.traded_count:int = 3
self.ppp_data:Dict[str, float] = {}
# currency future symbol and PPP yearly symbol
self.symbols:Dict[str, str] = {
"CME_AD1" : "AUS_PPP", # Australian Dollar Futures, Continuous Contract #1
"CME_BP1" : "GBR_PPP", # British Pound Futures, Continuous Contract #1
"CME_CD1" : "CAN_PPP", # Canadian Dollar Futures, Continuous Contract #1
"CME_EC1" : "DEU_PPP", # Euro FX Futures, Continuous Contract #1
"CME_JY1" : "JPN_PPP", # Japanese Yen Futures, Continuous Contract #1
"CME_NE1" : "NZL_PPP", # New Zealand Dollar Futures, Continuous Contract #1
"CME_SF1" : "CHE_PPP" # Swiss Franc Futures, Continuous Contract #1
}
for symbol, ppp_symbol in self.symbols.items():
data = self.AddData(data_tools.QuantpediaFutures, symbol, Resolution.Daily)
data.SetFeeModel(data_tools.CustomFeeModel())
data.SetLeverage(self.leverage)
# PPP quantpedia data
self.AddData(data_tools.PPPData, ppp_symbol, Resolution.Daily)
self.Settings.MinimumOrderMarginPortfolioPercentage = 0.
self.recent_month:int = -1
def OnData(self, data: Slice) -> None:
futures_last_update_date:Dict[str, datetime.date] = data_tools.QuantpediaFutures.get_last_update_date()
ppp_last_update_date:Dict[str, datetime.date] = data_tools.PPPData.get_last_update_date()
for symbol, ppp_symbol in self.symbols.items():
if ppp_symbol in data and data[ppp_symbol] and self.Time.date() < ppp_last_update_date[ppp_symbol]:
self.ppp_data[symbol] = data[ppp_symbol].Value
if self.recent_month == self.Time.month:
return
self.recent_month = self.Time.month
# January rebalance
if self.recent_month == 1:
ppp:Dict[str, float] = {}
for symbol, ppp_symbol in self.symbols.items():
if self.Securities[symbol].GetLastData() and self.Time.date() > futures_last_update_date[symbol]:
self.Liquidate()
return
long:List[str] = []
short:List[str] = []
if len(self.ppp_data) >= self.traded_count*2:
# ppp sorting
sorted_by_ppp:List[str] = sorted(self.ppp_data.items(), key = lambda x: x[1], reverse = True)
long = [x[0] for x in sorted_by_ppp[-self.traded_count:]]
short = [x[0] for x in sorted_by_ppp[:self.traded_count]]
self.ppp_data.clear()
# trade execution
invested:List[str] = [x.Key.Value for x in self.Portfolio if x.Value.Invested]
for symbol in invested:
if symbol not in long + short:
self.Liquidate(symbol)
for i, portfolio in enumerate([long, short]):
for symbol in portfolio:
if symbol in data and data[symbol]:
self.SetHoldings(symbol, ((-1) ** i) / len(portfolio))