| Overall Statistics |
|
Total Trades 48 Average Win 0.56% Average Loss -1.24% Compounding Annual Return 8.565% Drawdown 57.600% Expectancy -0.417 Net Profit 261.422% Sharpe Ratio 0.465 Probabilistic Sharpe Ratio 1.006% Loss Rate 60% Win Rate 40% Profit-Loss Ratio 0.46 Alpha 0.089 Beta -0.057 Annual Standard Deviation 0.181 Annual Variance 0.033 Information Ratio -0.012 Tracking Error 0.249 Treynor Ratio -1.469 Total Fees $70.81 |
# https://quantpedia.com/Screener/Details/14
class MomentumEffectAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2004, 7, 1) # Set Start Date
self.SetEndDate(2020, 7, 1) # Set Start Date
self.SetCash(100000) # Set Strategy Cash
self.UniverseSettings.Resolution = Resolution.Daily
self.mom = {} # Dict of Momentum indicator keyed by Symbol
self.lookback = 40 # Momentum indicator lookback period
self.num_coarse = 100 # Number of symbols selected at Coarse Selection
self.num_fine = 50 # Number of symbols selected at Fine Selection
self.num_long = 10 # Number of symbols with open positions
self.month = -1
self.rebalance = False
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
def CoarseSelectionFunction(self, coarse):
'''Drop securities which have no fundamental data or have too low prices.
Select those with highest by dollar volume'''
if self.Time.month < self.month:
return Universe.Unchanged
else:
self.rebalance = True
selected = [x for x in coarse if x.HasFundamentalData and x.Price > 2]
return [x.Symbol for x in selected]
def FineSelectionFunction(self, fine):
if self.Time.month < self.month:
return Universe.Unchanged
else:
self.month = self.Time.month +2
filteredfine = [f for f in fine if f.CompanyProfile.MarketCap > 1000000000]
selected = sorted(filteredfine, key=lambda f: f.ValuationRatios.EarningYield +
f.OperationRatios.ROIC.OneYear +
(f.FinancialStatements.BalanceSheet.TangibleBookValue.OneMonth / f.Price) +
f.OperationRatios.AVG5YrsROIC.FiveYears
,reverse=True)
return [x.Symbol for x in selected][:100]
def OnData(self, data):
# Update the indicator
for symbol, mom in self.mom.items():
mom.Update(self.Time, self.Securities[symbol].Close)
if not self.rebalance:
return
# Selects the securities with highest momentum
sorted_mom = sorted([k for k,v in self.mom.items() if v.IsReady],
key=lambda x: self.mom[x].Current.Value, reverse=True)
selected = sorted_mom[:self.num_long]
# Liquidate securities that are not in the list
for symbol, mom in self.mom.items():
if symbol not in selected:
self.Liquidate(symbol, 'Not selected')
# Buy selected securities
for symbol in selected:
self.SetHoldings(symbol, 1/self.num_long)
self.rebalance = False
def OnSecuritiesChanged(self, changes):
# Clean up data for removed securities and Liquidate
for security in changes.RemovedSecurities:
symbol = security.Symbol
if self.mom.pop(symbol, None) is not None:
self.Liquidate(symbol, 'Removed from universe')
for security in changes.AddedSecurities:
if security.Symbol not in self.mom:
self.mom[security.Symbol] = Momentum(self.lookback)
# Warm up the indicator with history price if it is not ready
addedSymbols = [k for k,v in self.mom.items() if not v.IsReady]
history = self.History(addedSymbols, 1 + self.lookback, Resolution.Daily)
history = history.close.unstack(level=0)
for symbol in addedSymbols:
ticker = str(symbol)
if ticker in history:
for time, value in history[ticker].items():
item = IndicatorDataPoint(symbol, time, value)
self.mom[symbol].Update(item)