from AlgorithmImports import *
#from AlgorithmImports.Indicators import *
import joblib
class RandomForestAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1) # Set the start date
self.SetEndDate(2000, 1, 31)
self.SetCash(100000) # Set the initial cash balance
# Load the machine learning model
model_key = 'spy_randomforest_predictor'
if self.ObjectStore.ContainsKey(model_key):
file_name = self.ObjectStore.GetFilePath(model_key)
self.model = joblib.load(file_name)
else:
# Handle the case when the model is not found
self.Error(f"Model '{model_key}' not found.")
self.Quit() # You may want to exit the algorithm here
#self.SetBenchmark("SPY") # Set the benchmark
self.spy = self.AddEquity("SPY").Symbol # Add SPY data
# Add the VIX data using AddData
self.vix = self.AddData(CBOE, "VIX", Resolution.Daily).Symbol
# Add USTYCR data using AddData
self.syield10yr = self.AddData(USTreasuryYieldCurveRate, "USTYCR", Resolution.Daily).Symbol
# Initialize rolling windows
self.vix_window = RollingWindow[float](30)
self.spy_window = RollingWindow[float](30)
self.syield10yr_window = RollingWindow[float](30)
# Initialize indicators
self.mfi = MoneyFlowIndex(14)
self.macd = MovingAverageConvergenceDivergence(12, 26, 9, MovingAverageType.Wilders)
self.williams = WilliamsPercentR(14)
self.stochastic = Stochastic(14, 3, 3)
# Attach indicators to SPY data
self.RegisterIndicator(self.spy, self.mfi, Resolution.Daily)
self.RegisterIndicator(self.spy, self.macd, Resolution.Daily)
self.RegisterIndicator(self.spy, self.williams, Resolution.Daily)
self.RegisterIndicator(self.spy, self.stochastic, Resolution.Daily)
# Initialize a counter to keep track of warm-up period
#self.warm_up_counter = 0
self.SetWarmUp(30) # Set the warm-up period
def OnData(self, slice):
if slice.ContainsKey("VIX.CBOE") and slice.ContainsKey(self.spy) and slice.ContainsKey("USTYCR"):
# Access the data if it exists
vix_data = slice["VIX.CBOE"]
spy_data = slice[self.spy]
syield10yr_data = slice["USTYCR"]
# Update rolling windows with new data
self.vix_window.Add(vix_data.Close)
self.spy_window.Add(spy_data.Close)
self.syield10yr_window.Add(syield10yr_data.TenYear)
# Increment the warm-up counter
#self.warm_up_counter += 1
if self.IsWarmingUp:
return
else:
df = self.CalculateFeatures()
prediction = self.GetPrediction(df)
if prediction == "Up":
self.SetHoldings(self.spy, 1)
else:
self.SetHoldings(self.spy, 0)
#else:
# Data is not available, handle this case (e.g., log a message)
#self.Debug("Data not available for one or more symbols")
def CalculateFeatures(self):
# Calculate your features from the data and create a DataFrame
# Replace this with your specific feature calculation logic
# Ensure that the DataFrame has the required columns ('vix_lagged', 'return_shift', etc.)
# Example placeholder for feature calculation:
vix_lagged = self.vix_window[0] # Replace with actual calculation
return_shift = self.spy_window[0] # Replace with actual calculation
change_yield_rate_shift = self.syield10yr_window[0] # Replace with actual calculation
# Calculate MFI, MACD, Williams %R, and Stochastic Oscillator using indicators
mfi = self.mfi.Current.Value
macd = self.macd.Current.Value
williams = self.williams.Current.Value
stochastic = self.stochastic.Current.Value
# Create a DataFrame with the calculated features
df = pd.DataFrame({
'vix_lagged': vix_lagged,
'return_shift': return_shift,
'change_yield_rate_shift': change_yield_rate_shift,
'mfi': mfi,
'macd': macd,
'williams': williams,
'stochastic': stochastic
})
self.Debug(df.tail(1))
return df.tail(1) # Return the last row of the DataFrame
def GetPrediction(self, df):
# Ensure that you have enough data for prediction
if len(df) == 0:
return "NotEnoughData"
# Make the prediction using your machine learning model
prediction = self.model.predict(df)
if prediction == 1:
return "Up"
else:
return "Down"
Octavio del Sueldo
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
To unlock posting to the community forums please complete at least 30% of Boot Camp.
You can continue your Boot Camp training progress from the terminal. We hope to see you in the community soon!