I've implemented all your previous recommendations for my 900-stock news monitoring system. Now I need your expert review and guidance on verification, advanced technical analysis, and new features.

═══════════════════════════════════════════════════════════════════════════════
PART 1: VERIFICATION OF IMPLEMENTED CHANGES
═══════════════════════════════════════════════════════════════════════════════

I've implemented the following changes based on your recommendations. Please verify if they're correct:

**1.1 Dynamic Thresholds Implementation**

```python
# config.py
def get_dynamic_thresholds(current_time, importance_level):
   """
   Returns dynamic thresholds based on time of day and news importance.
   
   importance_level:
   - 0: Critical (FDA, Bankruptcy, Halt)
   - 1: High (Earnings, Acquisition)
   - 2: Medium (Financial news)
   - 3: Low (General news)
   """
   # Base thresholds by importance
   base_thresholds = {
       0: {'rvol': 1.5, 'volume_spike': 3.0, 'price_change': 3.0},
       1: {'rvol': 2.0, 'volume_spike': 4.0, 'price_change': 4.0},
       2: {'rvol': 2.5, 'volume_spike': 5.0, 'price_change': 5.0},
       3: {'rvol': 3.0, 'volume_spike': 6.0, 'price_change': 6.0}
   }
   
   # Time-of-day multipliers
   hour = current_time.hour
   if 9 <= hour < 10:  # Opening hour
       multiplier = 0.8  # Lower thresholds (more sensitive)
   elif 10 <= hour < 15:  # Mid-day
       multiplier = 1.0  # Normal thresholds
   elif 15 <= hour < 16:  # Closing hour
       multiplier = 0.9  # Slightly lower
   else:  # After hours
       multiplier = 1.2  # Higher thresholds (less sensitive)
   
   thresholds = base_thresholds[importance_level]
   return {
       'rvol': thresholds['rvol'] * multiplier,
       'volume_spike': thresholds['volume_spike'] * multiplier,
       'price_change': thresholds['price_change'] * multiplier
   }
```

**Q1.1:** Is this dynamic threshold logic correct? Should I adjust the multipliers or base values?

**Q1.2:** Should I add more time periods (e.g., pre-market, lunch hour)?

**1.2 Price Change Calculation**

```python
# symbol_data.py
def calculate_price_change_percent(self):
   """Calculate price change % since news time"""
   if self.news_price is None or self.news_price == 0:
       return 0.0
   
   return ((self.price - self.news_price) / self.news_price) * 100
```

**Q1.3:** Is this the correct way to calculate price change? Should I use absolute value or keep the sign?

**1.3 SPY Correlation Filter**

```python
# main.py
def _check_spy_correlation(self, symbol):
   """Check if stock movement is correlated with SPY"""
   if symbol not in self.spy_price_at_news:
       return False
   
   spy_change = ((self.spy_current_price - self.spy_price_at_news[symbol]) / 
                 self.spy_price_at_news[symbol]) * 100
   
   # If SPY change >= 0.5%, might be market-wide movement
   if abs(spy_change) >= 0.5:
       return True
   
   return False
```

**Q1.4:** Is 0.5% the right threshold for SPY correlation? Should I also compare the direction (both up or both down)?

**1.4 Weekly ADV Update with RollingWindow**

```python
# symbol_data.py
class SymbolData:
   def __init__(self, algo, symbol):
       self.volume_window = RollingWindow[float](30)  # Last 30 days
   
   def update_daily_volume(self, volume):
       """Update rolling window with daily volume"""
       self.volume_window.add(volume)
   
   def get_average_volume(self):
       """Calculate ADV from rolling window"""
       if not self.volume_window.is_ready:
           return self.average_volume  # Fallback to initial value
       
       total = sum([self.volume_window[i] for i in range(self.volume_window.count)])
       return total / self.volume_window.count
```

**Q1.5:** Is this the correct way to use RollingWindow for ADV? Should I update it daily or only weekly?

**1.5 AND/OR Logic for Reaction Alerts**

```python
# main.py
volume_condition = (spike_ratio >= thresholds['volume_spike'] and 
                  rvol >= thresholds['rvol'])
price_condition = price_change >= thresholds['price_change']

# Send alert if EITHER condition is met
if volume_condition or price_condition:
   send_alert()
```

**Q1.6:** Is this OR logic correct? Or should I require BOTH volume AND price for high-confidence alerts?

═══════════════════════════════════════════════════════════════════════════════
PART 2: ADVANCED TECHNICAL ANALYSIS DEVELOPMENT
═══════════════════════════════════════════════════════════════════════════════

Currently, I'm only using RVOL and Volume Spike. I want to add more sophisticated technical analysis.

**2.1 Price Action Indicators**

**Q2.1:** What are the TOP 3 price action indicators I should add for news reaction monitoring?
- Bollinger Bands breakout?
- ATR (Average True Range)?
- Price momentum?
- Others?

**Q2.2:** How do I implement these in QuantConnect? Can you provide a code example for the most important one?

**2.2 Volume Profile Analysis**

**Q2.3:** Should I track intraday volume distribution (e.g., volume at different price levels)?

**Q2.4:** How can I detect "unusual" volume patterns beyond simple spike detection?

**2.3 Multi-Timeframe Analysis**

Currently, I only monitor 1-minute bars.

**Q2.5:** Should I also track 5-minute or 15-minute bars for confirmation?

**Q2.6:** How do I implement multi-timeframe analysis in QuantConnect without performance issues?

**2.4 Support/Resistance Levels**

**Q2.7:** Should I identify key support/resistance levels and alert when price breaks them after news?

**Q2.8:** What's the best algorithm to detect S/R levels in QuantConnect?

**2.5 Order Flow Analysis**

**Q2.9:** Can I access bid/ask data or order book depth in QuantConnect for better analysis?

**Q2.10:** If yes, how do I use it to improve reaction detection?

═══════════════════════════════════════════════════════════════════════════════
PART 3: ADVANCED FEATURES & OPTIMIZATION
═══════════════════════════════════════════════════════════════════════════════

**3.1 Machine Learning Integration**

**Q3.1:** Can I use machine learning to predict which news will cause strong reactions?

**Q3.2:** What features should I extract (news sentiment, historical stock behavior, etc.)?

**Q3.3:** Can you recommend a simple ML model to start with in QuantConnect?

**3.2 Historical Backtesting**

**Q3.4:** How do I backtest this news monitoring system properly? Benzinga data might not be available in historical backtests.

**Q3.5:** What's the best way to evaluate the system's performance (precision, recall, false positive rate)?

**3.3 Risk Management**

**Q3.6:** Should I add position sizing recommendations based on news importance and reaction strength?

**Q3.7:** How do I calculate optimal position size considering volatility and dollar volume?

**3.4 Alert Filtering & Ranking**

**Q3.8:** Should I add a "confidence score" to each alert based on multiple factors?

**Q3.9:** What factors should contribute to this score?

**3.5 Performance Optimization**

**Q3.10:** With 900 stocks, are there any performance bottlenecks I should watch for?

**Q3.11:** Should I use `Schedule.On()` vs `on_data()` for certain operations?

**Q3.12:** Any tips for reducing memory usage?

═══════════════════════════════════════════════════════════════════════════════
PART 4: QUANTCONNECT BEST PRACTICES & FEATURES
═══════════════════════════════════════════════════════════════════════════════

**4.1 Data Management**

**Q4.1:** What's the best way to persist data across algorithm restarts (besides ObjectStore)?

**Q4.2:** Should I use `History()` or `RollingWindow` for storing price/volume data?

**4.2 Event Scheduling**

**Q4.3:** I'm using `Schedule.On()` for weekly ADV updates. Is there a better way?

**Q4.4:** Can I schedule events based on market events (e.g., after earnings announcements)?

**4.3 Logging & Monitoring**

**Q4.5:** What's the difference between `self.log()`, `self.debug()`, and `self.error()`? When should I use each?

**Q4.6:** How do I set up custom charts/metrics in the QuantConnect dashboard?

**4.4 Live Trading Considerations**

**Q4.7:** Are there any differences in behavior between Backtest and Live Trading I should be aware of?

**Q4.8:** How do I handle algorithm restarts or disconnections in Live Trading?

**4.5 Advanced QuantConnect Features**

**Q4.9:** Can I use `Insight` objects for this type of news monitoring system?

**Q4.10:** Should I explore `Alpha Streams` for monetizing this strategy?

**Q4.11:** Can I integrate custom data sources (e.g., Twitter sentiment, Reddit mentions)?

═══════════════════════════════════════════════════════════════════════════════
PART 5: SPECIFIC IMPROVEMENT RECOMMENDATIONS
═══════════════════════════════════════════════════════════════════════════════

Based on your deep knowledge of QuantConnect and algorithmic trading:

**Q5.1:** What are the TOP 5 improvements I should prioritize next?

**Q5.2:** Are there any QuantConnect features or APIs I'm not using that would significantly improve this system?

**Q5.3:** What are the most common mistakes traders make with news-based strategies, and how can I avoid them?

**Q5.4:** Can you suggest a "dream feature" that would take this system to the next level?

**Q5.5:** If you were building this system from scratch today, what would you do differently?

═══════════════════════════════════════════════════════════════════════════════
SUMMARY
═══════════════════════════════════════════════════════════════════════════════

I'm looking for:
1. ✅ Verification that my implementations are correct
2. 📈 Guidance on advanced technical analysis
3. 🚀 Ideas for new features and optimizations
4. 💡 Best practices and hidden QuantConnect features
5. 🎯 Your expert recommendations for next steps

Thank you for your continued guidance! Your previous recommendations were invaluable