LEAN is the open source
algorithmic trading engine powering QuantConnect. Founded in 2013 LEAN has been built by a
global community of 80+ engineers and powers more than a dozen hedge funds today.
Alpha League Competition: $1,000 Weekly Prize Pool
Qualifying Alpha Streams Reentered Weekly Learn
more
I apologize for having such basic questions. I've been tinkering with Lean but I have gaps on how QuantConnect and Lean work together. Feel free to point me to training material that I obviously missed
1. When I started working with lean it used the BasicTemplateFrameworkAlgorithm from QuantConnect.Algorithm.CSharp.dll. If I create my own Algo shoud it be placed in the same folder? What goes into Alpha folder?
2. How do I move my new algo (let's say I created MyNewAwesomeAlgo.cs) to QuantConnect site for backtesting?
3. When I launch algo live will it work off real-time tick data?
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
I would recommend placing all the algorithms you develop locally in the QuantConnect.Algorithm.CSharp project and QuantConnect.Algorithm.CSharp namespace. Your framework models could also be placed along with Lean/QuantConnect framework models. Alternatively, your framework models can be in the algorithm code file.
If you install QuantConnect plug in, you save the files to QuantConnect.com and send backtest:
0
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Thanks, I will build a basic algo today and try to upload it for backtesting. Can you also provide more info on Alphas folder and what is alphas in general? Also, is backtesting available with tick data?
Please take a look at the documentation on Algorithm Framework. Yes, backtesting is available with tick data. However, tick data is timestamped to the second. That means that all thicks that belong to the same second will arrive at OnData (or Update in an Alpha Model) together as a list.
0
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Loading...
To unlock posting to the community forums please complete at least 30% of Boot Camp. You can
continue your Boot Camp training progress from the
terminal. We hope to see you in the community soon!
You do not have enough QC Credit to send this award, get a QC Credit Pack
here.
Award Sent Successfully
Thank you for giving back to the community.
Processing...
Choose a Credit Pack
Payment Confirmation
QuantConnect Credit (QCC) can be applied to your cloud-invoices or
gifted to others in the community with Community Awards in recognition of their contributions.
Community Awards highlight the awesome work your fellow community members are doing and inspires
high quality algorithm contributions to the community. Select an option below to add
QuantConnect Credit to your account:
$5
500 Credit Points
 
$10
1,000 Credit Points
 
$18
2,000 Credit Points
10% bonus
$45
5,000 Credit Points
10% bonus
03/23XXXX XXXX XXXX 0592
We will charge your default organization credit card on file, click
here to update.