I've done multiple changes to this algorithm in order to fix it but the error code still occurs.

from System.Collections.Generic import List
from QuantConnect.Data.UniverseSelection import *

class BasicTemplateAlgorithm(QCAlgorithm):

def __init__(self):
# set the flag for rebalance
self.reb = 1
# Number of stocks to pass CoarseSelection process
self.num_coarse = 250
# Number of stocks to long/short
self.num_fine = 20
self.symbols = None
self.first_month = 0


def Initialize(self):
self.SetCash(100000)
self.SetStartDate(2015,1,1)
# if not specified, the Backtesting EndDate would be today
# self.SetEndDate(2017,1,1)


self.spy = self.AddEquity("SPY", Resolution.Daily).Symbol

self.UniverseSettings.Resolution = Resolution.Daily

self.AddUniverse(self.CoarseSelectionFunction,self.FineSelectionFunction)

# Schedule the rebalance function to execute at the begining of each month
self.Schedule.On(self.DateRules.MonthStart(self.spy),
self.TimeRules.AfterMarketOpen(self.spy,5), Action(self.rebalance))


def CoarseSelectionFunction(self, coarse):
# if the rebalance flag is not 1, return null list to save time.
if self.reb != 1:
return (List[Symbol]())

# make universe selection once a month
# drop stocks which have no fundamental data or have too low prices
selected = [x for x in coarse if (x.HasFundamentalData)
and (float(x.Price) > 5)]

sortedByDollarVolume = sorted(selected, key=lambda x: x.DollarVolume, reverse=True)
top = sortedByDollarVolume[:self.num_coarse]
list = List[Symbol]()
for x in top:
list.Add(x.Symbol)
return list

def FineSelectionFunction(self, fine):
# return null list if it's not time to rebalance
if self.reb != 1:
return (List[Symbol]())

self.reb = 0

# drop stocks which don't have the information we need.
# you can try replacing those factor with your own factors here

filtered_fine = [x for x in fine if x.OperationRatios.OperationMargin.Value
and x.ValuationRatios.PriceChange1M
and x.ValuationRatios.BookValuePerShare]

self.Log('remained to select %d'%(len(filtered_fine)))

# rank stocks by three factor.
sortedByfactor1 = sorted(filtered_fine, key=lambda x: x.OperationRatios.OperationMargin.Value, reverse=True)
sortedByfactor2 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.PriceChange1M, reverse=True)
sortedByfactor3 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.BookValuePerShare, reverse=True)

stock_dict = {}

# assign a score to each stock, you can also change the rule of scoring here.
for i,ele in enumerate(sortedByfactor1):
rank1 = i
rank2 = sortedByfactor2.index(ele)
rank3 = sortedByfactor3.index(ele)
score = sum([rank1*0.2,rank2*0.4,rank3*0.4])
stock_dict[ele] = score

# sort the stocks by their scores
self.sorted_stock = sorted(stock_dict.items(), key=lambda d:d[1],reverse=False)
sorted_symbol = [x[0] for x in self.sorted_stock]

# sotre the top stocks into the long_list and the bottom ones into the short_list
self.long = [x.Symbol for x in sorted_symbol[:self.num_fine]]
self.short = [x.Symbol for x in sorted_symbol[-self.num_fine:]]

topFine = self.long+self.short

list = List[Symbol]()
for x in topFine:
list.Add(x)

return list

def OnData(self, data):
pass

def rebalance(self):
if self.first_month == 0:
self.first_month += 1
return
# if this month the stock are not going to be long/short, liquidate it.
long_short_list = self.long + self.short
for i in self.Portfolio.Values:
if (i.Invested) and (i.Symbol not in long_short_list):
self.Liquidate(i.Symbol)

# Alternatively, you can liquidate all the stocks at the end of each month.
# Which method to choose depends on your investment philosiphy
# if you prefer to realized the gain/loss each month, you can choose this method.

#self.Liquidate()

# Assign each stock equally. Alternatively you can design your own portfolio construction method
for i in self.long:
self.SetHoldings(i,0.9/self.num_fine)

for i in self.short:
self.SetHoldings(i,-0.9/self.num_fine)

self.reb = 1