Brain
Brain Sentiment Indicator
Introduction
The Brain Sentiment Indicator dataset by Brain tracks the public sentiment around US Equities. The data covers 4,500 US Equities, starts in August 2016, and is delivered on a daily frequency. This dataset is created by analyzing financial news using Natural Language Processing techniques while taking into account the similarity and repetition of news on the same topic. The sentiment score assigned to each stock ranges from -1 (most negative) to +1 (most positive). The sentiment score corresponds to the average sentiment for each piece of news. The score is updated daily and is available on two time scales: 7 days and 30 days. For more information, see Brain's summary paper.
This dataset depends on the US Equity Security Master dataset because the US Equity Security Master dataset contains information on splits, dividends, and symbol changes.
For more information about the Brain Sentiment Indicator dataset, including CLI commands and pricing, see the dataset listing.
About the Provider
Brain is a Research Company that creates proprietary datasets and algorithms for investment strategies, combining experience in financial markets with strong competencies in Statistics, Machine Learning, and Natural Language Processing. The founders share a common academic background of research in Physics as well as extensive experience in Financial markets.
Getting Started
The following snippet demonstrates how to request data from the Brain Sentiment Indicator dataset:
self.aapl = self.add_equity("AAPL", Resolution.DAILY).symbol
self.dataset_7day_symbol = self.add_data(BrainSentimentIndicator7Day, self.aapl).symbol
self.dataset_30day_symbol = self.add_data(BrainSentimentIndicator30Day, self.aapl).symbol
self._universe = self.add_universe(BrainSentimentIndicatorUniverse, self.universe_selection) _symbol = AddEquity("AAPL", Resolution.Daily).Symbol;
_dataset7DaySymbol = AddData<BrainSentimentIndicator7Day>(_symbol).Symbol;
_dataset30DaySymbol = AddData<BrainSentimentIndicator30Day>(_symbol).Symbol;
_universe = AddUniverse<BrainSentimentIndicatorUniverse>(UniverseSelection);
Requesting Data
To add Brain Sentiment Indicator data to your algorithm, call the AddDataadd_data method. Save a reference to the dataset Symbol so you can access the data later in your algorithm.
class BrainSentimentDataAlgorithm(QCAlgorithm):
def initialize(self) -> None:
self.set_start_date(2019, 1, 1)
self.set_end_date(2021, 7, 8)
self.set_cash(100000)
symbol = self.add_equity("AAPL", Resolution.DAILY).symbol
self.dataset_7day_symbol = self.add_data(BrainSentimentIndicator7Day, symbol).symbol
self.dataset_30day_symbol = self.add_data(BrainSentimentIndicator30Day, symbol).symbol public class BrainSentimentDataAlgorithm : QCAlgorithm
{
private Symbol _dataset7DaySymbol, _dataset30DaySymbol;
public override void Initialize()
{
SetStartDate(2019, 1, 1);
SetEndDate(2021, 7, 8);
SetCash(100000);
var symbol = AddEquity("AAPL", Resolution.Daily).Symbol;
_dataset7DaySymbol = AddData<BrainSentimentIndicator7Day>(symbol).Symbol;
_dataset30DaySymbol = AddData<BrainSentimentIndicator30Day>(symbol).Symbol;
}
}
Accessing Data
To get the current Brain Sentiment Indicator data, index the current Slice with the dataset Symbol. Slice objects deliver unique events to your algorithm as they happen, but the Slice may not contain data for your dataset at every time step. To avoid issues, check if the Slice contains the data you want before you index it.
def on_data(self, slice: Slice) -> None:
if slice.contains_key(self.dataset_7day_symbol):
data_point = slice[self.dataset_7day_symbol]
self.log(f"{self.dataset_7day_symbol} sentiment at {slice.time}: {data_point.sentiment}")
if slice.contains_key(self.dataset_30day_symbol):
data_point = slice[self.dataset_30day_symbol]
self.log(f"{self.dataset_30day_symbol} sentiment at {slice.time}: {data_point.sentiment}") public override void OnData(Slice slice)
{
if (slice.ContainsKey(_dataset7DaySymbol))
{
var dataPoint = slice[_dataset7DaySymbol];
Log($"{_dataset7DaySymbol} sentiment at {slice.Time}: {dataPoint.Sentiment}");
}
if (slice.ContainsKey(_dataset30DaySymbol))
{
var dataPoint = slice[_dataset30DaySymbol];
Log($"{_dataset30DaySymbol} sentiment at {slice.Time}: {dataPoint.Sentiment}");
}
}
To iterate through all of the dataset objects in the current Slice, call the Getget method.
def on_data(self, slice: Slice) -> None:
for dataset_symbol, data_point in slice.get(BrainSentimentIndicator7Day).items():
self.log(f"{dataset_symbol} sentiment at {slice.time}: {data_point.sentiment}")
for dataset_symbol, data_point in slice.get(BrainSentimentIndicator30Day).items():
self.log(f"{dataset_symbol} sentiment at {slice.time}: {data_point.sentiment}") public override void OnData(Slice slice)
{
foreach (var kvp in slice.Get<BrainSentimentIndicator7Day>())
{
var datasetSymbol = kvp.Key;
var dataPoint = kvp.Value;
Log($"{datasetSymbol} sentiment at {slice.Time}: {dataPoint.Sentiment}");
}
foreach (var kvp in slice.Get<BrainSentimentIndicator30Day>())
{
var datasetSymbol = kvp.Key;
var dataPoint = kvp.Value;
Log($"{datasetSymbol} sentiment at {slice.Time}: {dataPoint.Sentiment}");
}
}
Historical Data
To get historical Brain Sentiment Indicator data, call the Historyhistory method with the dataset Symbol. If there is no data in the period you request, the history result is empty.
# DataFrames week_history_df = self.history(self.dataset_7day_symbol, 100, Resolution.DAILY) month_history_df = self.history(self.dataset_30day_symbol, 100, Resolution.DAILY) history_df = self.history([self.dataset_7day_symbol, self.dataset_30day_symbol], 100, Resolution.DAILY) # Dataset objects week_history_bars = self.history[BrainSentimentIndicator7Day](self.dataset_7day_symbol, 100, Resolution.DAILY) month_history_bars = self.history[BrainSentimentIndicator30Day](self.dataset_30day_symbol, 100, Resolution.DAILY)
// Dataset objects
var weekHistory = History<BrainSentimentIndicator7Day>(_dataset7DaySymbol, 100, Resolution.Daily);
var monthHistory = History<BrainSentimentIndicator30Day>(_dataset30DaySymbol, 100, Resolution.Daily);
// Slice objects
var history = History(new[] {_dataset7DaySymbol, _dataset30DaySymbol}, 100, Resolution.Daily);
For more information about historical data, see History Requests.
Universe Selection
To select a dynamic universe of US Equities based on Brain Sentiment Indicator data, call the AddUniverseadd_universe method with the BrainSentimentIndicatorUniverse class and a selection function.
def initialize(self) -> None:
self._universe = self.add_universe(BrainSentimentIndicatorUniverse, self.universe_selection)
def universe_selection(self, alt_coarse: List[BrainSentimentIndicatorUniverse]) -> List[Symbol]:
return [d.symbol for d in alt_coarse \
if d.total_article_mentions7_days > 0 \
and d.sentiment7_days] private Universe _universe;
public override void Initialize()
{
_universe = AddUniverse<BrainSentimentIndicatorUniverse>(altCoarse=>
{
return from d in altCoarse.OfType<BrainSentimentIndicatorUniverse>()
where d.TotalArticleMentions7Days > 0m && d.Sentiment7Days > 0m
select d.Symbol;
});
}
The Brain Sentiment Indicator universe runs at 7 AM Eastern Time (ET) in live trading. For more information about dynamic universes, see Universes.
Universe History
You can get historical universe data in an algorithm and in the Research Environment.
Historical Universe Data in Algorithms
To get historical universe data in an algorithm, call the Historyhistory method with the Universe object and the lookback period. If there is no data in the period you request, the history result is empty.
var universeHistory = History(_universe, 30, Resolution.Daily);
foreach (var sentiments in universeHistory)
{
foreach (BrainSentimentIndicatorUniverse sentiment in sentiments)
{
Log($"{sentiment.Symbol} 7-day sentiment at {sentiment.EndTime}: {sentiment.Sentiment7Days}");
}
} # DataFrame example where the columns are the BrainSentimentIndicatorUniverse attributes:
history_df = self.history(self._universe, 30, Resolution.DAILY, flatten=True)
# Series example where the values are lists of BrainSentimentIndicatorUniverse objects:
universe_history = self.history(self._universe, 30, Resolution.DAILY)
for (_, time), sentiments in universe_history.items():
for sentiment in sentiments:
self.log(f"{sentiment.symbol} 7-day sentiment at {sentiment.end_time}: {sentiment.sentiment7_days}")
Historical Universe Data in Research
To get historical universe data in research, call the UniverseHistoryuniverse_history method with the Universe object, a start date, and an end date. This method returns the filtered universe. If there is no data in the period you request, the history result is empty.
var universeHistory = qb.UniverseHistory(universe, qb.Time.AddDays(-30), qb.Time);
foreach (var sentiments in universeHistory)
{
foreach (BrainSentimentIndicatorUniverse sentiment in sentiments)
{
Console.WriteLine($"{sentiment.Symbol} 7-day sentiment at {sentiment.EndTime}: {sentiment.Sentiment7Days}");
}
} # DataFrame example where the columns are the BrainSentimentIndicatorUniverse attributes:
history_df = qb.universe_history(universe, qb.time-timedelta(30), qb.time, flatten=True)
# Series example where the values are lists of BrainSentimentIndicatorUniverse objects:
universe_history = qb.universe_history(universe, qb.time-timedelta(30), qb.time)
for (_, time), sentiments in universe_history.items():
for sentiment in sentiments:
print(f"{sentiment.symbol} 7-day sentiment at {sentiment.end_time}: {sentiment.sentiment7_days}")
You can call the Historyhistory method in Research.
Remove Subscriptions
To remove a subscription, call the RemoveSecurityremove_security method.
self.remove_security(self.dataset_7day_symbol) self.remove_security(self.dataset_30day_symbol)
RemoveSecurity(_dataset7DaySymbol); RemoveSecurity(_dataset30DaySymbol);
If you subscribe to Brain Sentiment Indicator data for assets in a dynamic universe, remove the dataset subscription when the asset leaves your universe. To view a common design pattern, see Track Security Changes.
Example Applications
The Brain Sentiment Indicator dataset enables you to incorporate sentiment from financial news sources into your strategies. Examples include the following strategies:
- Buying when the public sentiment for a security is increasing
- Short selling when the public sentiment for a security is decreasing
- Scaling the position sizing of securities based on how many times they are mentioned in financial news articles
- Sector rotation based on news sentiment
Classic Algorithm Example
The following example algorithm buys Apple when the 30-day Brain Sentiment indicator increases. Otherwise, it remains in cash.
from AlgorithmImports import *
class BrainSentimentDataAlgorithm(QCAlgorithm):
latest_sentiment_value = None
target_holdings = 0
def initialize(self) -> None:
self.set_start_date(2024, 9, 1)
self.set_end_date(2024, 12, 31)
self.set_cash(100000)
# Requesting the processed longer term (30-day) sentiment score data for sentiment trading
self.aapl = self.add_equity("AAPL", Resolution.DAILY).symbol
self.dataset_symbol = self.add_data(BrainSentimentIndicator30Day, self.aapl).symbol
# Historical data
history = self.history(self.dataset_symbol, 100, Resolution.DAILY)
self.debug(f"We got {len(history)} items from our history request for {self.dataset_symbol}")
if history.empty:
return
# Warm up historical sentiment values, cache for comparing last sentiment score to trade, making it immediately tradable signal
previous_sentiment_values = history.loc[self.dataset_symbol].sentiment.values
for sentiment in previous_sentiment_values:
self.update(sentiment)
def update(self, sentiment: float) -> None:
# Comparing the last sentiment score and decide to buy if the sentiment increases to ride the popularity
if self.latest_sentiment_value is not None:
self.target_holdings = int(sentiment > self.latest_sentiment_value)
self.latest_sentiment_value = sentiment
def on_data(self, slice: Slice) -> None:
# Update trade direction based on updated data
if slice.contains_key(self.dataset_symbol):
sentiment = slice[self.dataset_symbol].sentiment
self.update(sentiment)
# Ensure we have security data in the current slice to avoid stale fill
if not (slice.contains_key(self.aapl) and slice[self.aapl] is not None):
return
# Buy if sentiment increase, liquidate otherwise to ride on the popularity of the equity
if self.target_holdings != self.portfolio.invested:
self.set_holdings(self.aapl, self.target_holdings) public class BrainSentimentDataAlgorithm : QCAlgorithm
{
private Symbol _symbol;
private Symbol _datasetSymbol;
private decimal? _latestSentimentValue = null;
private int _targetHoldings = 0;
public override void Initialize()
{
SetStartDate(2024, 9, 1);
SetEndDate(2024, 12, 31);
SetCash(100000);
// Requesting the processed longer term (30-day) sentiment score data for sentiment trading
_symbol = AddEquity("AAPL", Resolution.Daily).Symbol;
_datasetSymbol = AddData<BrainSentimentIndicator30Day>(_symbol).Symbol;
// Historical data
var history = History<BrainSentimentIndicator30Day>(_datasetSymbol, 100, Resolution.Daily);
Debug($"We got {history.Count()} items from our history request for {_datasetSymbol}");
// Warm up historical sentiment values, cache for comparing last sentiment score to trade, making it immediately tradable signal
var previousSentimentValues = history.Select(x => x.Sentiment);
foreach (var sentiment in previousSentimentValues)
{
Update(sentiment);
}
}
public void Update(decimal sentiment)
{
// Comparing the last sentiment score and decide to buy if the sentiment increases to ride the popularity
if (_latestSentimentValue != null)
{
_targetHoldings = sentiment > _latestSentimentValue ? 1 : 0;
}
_latestSentimentValue = sentiment;
}
public override void OnData(Slice slice)
{
// Update trade direction based on updated data
if (slice.ContainsKey(_datasetSymbol))
{
var sentiment = slice[_datasetSymbol].Sentiment;
Update(sentiment);
}
// Ensure we have security data in the current slice to avoid stale fill
// Buy if sentiment increase, liquidate otherwise to ride on the popularity of the equity
if (slice.Bars.ContainsKey(_symbol) && _targetHoldings == 1 != Portfolio.Invested)
{
SetHoldings(_symbol, _targetHoldings);
}
}
}
Framework Algorithm Example
The following example algorithm creates a dynamic universe of US Equities that have been mentioned in an article over the last seven days. It then buys the subset of Equities that have increasing sentiment and forms an equal-weighted portfolio.
from AlgorithmImports import *
class BrainSentimentDataAlgorithm(QCAlgorithm):
def initialize(self) -> None:
self.set_start_date(2024, 9, 1)
self.set_end_date(2024, 12, 31)
self.set_cash(100000)
self.settings.minimum_order_margin_portfolio_percentage = 0
self.universe_settings.resolution = Resolution.DAILY
# Filter base on sentiment data
self.add_universe(BrainSentimentIndicatorUniverse, self.universe_selection)
self.add_alpha(BrainSentimentAlphaModel())
self.set_portfolio_construction(EqualWeightingPortfolioConstructionModel())
self.add_risk_management(NullRiskManagementModel())
self.set_execution(ImmediateExecutionModel())
def universe_selection(self, alt_coarse: List[BrainSentimentIndicatorUniverse]) -> List[Symbol]:
# Filter for any sentiment on last 7 days to trade on sentiment news
return [d.symbol for d in alt_coarse \
if d.SentimentalArticleMentions7Days is not None and d.SentimentalArticleMentions7Days > 0]
class BrainSentimentAlphaModel(AlphaModel):
symbol_data_by_symbol = {}
def update(self, algorithm: QCAlgorithm, slice: Slice) -> List[Insight]:
insights = []
for symbol, symbol_data in self.symbol_data_by_symbol.items():
# Update trade direction based on updated data
if slice.contains_key(symbol_data.dataset_symbol) and slice[symbol_data.dataset_symbol] is not None:
sentiment = slice[symbol_data.dataset_symbol].sentiment
symbol_data.update(sentiment)
# Ensure we have security data in the current slice to avoid stale fill
if not (slice.contains_key(symbol) and slice[symbol] is not None):
continue
# Buy if sentiment increase, liquidate otherwise to ride on the popularity of the equity
if symbol_data.target_direction == InsightDirection.UP != algorithm.portfolio[symbol].invested:
insights.append(Insight.price(symbol, timedelta(days=100), symbol_data.target_direction))
return insights
def on_securities_changed(self, algorithm: QCAlgorithm, changes: SecurityChanges) -> None:
for security in changes.added_securities:
symbol = security.symbol
self.symbol_data_by_symbol[symbol] = SymbolData(algorithm, symbol)
for security in changes.removed_securities:
symbol_data = self.symbol_data_by_symbol.pop(security.symbol, None)
if symbol_data:
symbol_data.dispose()
class SymbolData:
target_direction = InsightDirection.FLAT
_latest_sentiment_value = None
def __init__(self, algorithm: QCAlgorithm, symbol: Symbol) -> None:
self.algorithm = algorithm
# Requesting the processed longer term (30-day) sentiment score data for sentiment trading
self.dataset_symbol = algorithm.add_data(BrainSentimentIndicator30Day, symbol).symbol
# Historical data
history = algorithm.history(self.dataset_symbol, 100, Resolution.DAILY)
if history.empty or 'sentiment' not in history.columns:
return
# Warm up historical sentiment values, cache for comparing last sentiment score to trade, making it immediately tradable signal
previous_sentiment_values = history.loc[self.dataset_symbol].sentiment.values
for sentiment in previous_sentiment_values:
self.update(sentiment)
def dispose(self) -> None:
# Unsubscribe from the Brain Sentiment feed for this security to release computational resources
self.algorithm.remove_security(self.dataset_symbol)
def update(self, sentiment: float) -> None:
# Comparing the last sentiment score and decide to buy if the sentiment increases to ride the popularity
if self._latest_sentiment_value is not None:
if sentiment > self._latest_sentiment_value:
self.target_direction = InsightDirection.UP
else:
self.target_direction = InsightDirection.FLAT
self._latest_sentiment_value = sentiment public class BrainSentimentDataAlgorithm : QCAlgorithm
{
public override void Initialize()
{
SetStartDate(2024, 9, 1);
SetEndDate(2024, 12, 31);
SetCash(100000);
Settings.MinimumOrderMarginPortfolioPercentage = 0;
UniverseSettings.Resolution = Resolution.Daily;
// Filter by sentiment data
AddUniverse<BrainSentimentIndicatorUniverse>(altCoarse =>
{
// Filter for any sentiment on last 7 days to trade on sentiment news
return from d in altCoarse.OfType<BrainSentimentIndicatorUniverse>()
where d.TotalArticleMentions7Days > 0m
select d.Symbol;
});
AddAlpha(new BrainSentimentAlphaModel());
SetPortfolioConstruction(new EqualWeightingPortfolioConstructionModel());
AddRiskManagement(new NullRiskManagementModel());
SetExecution(new ImmediateExecutionModel());
}
}
public class BrainSentimentAlphaModel : AlphaModel
{
private Dictionary<Symbol, SymbolData> _symbolDataBySymbol = new Dictionary<Symbol, SymbolData>();
public override IEnumerable<Insight> Update(QCAlgorithm algorithm, Slice slice)
{
var insights = new List<Insight>();
foreach (var entry in _symbolDataBySymbol)
{
var symbol = entry.Key;
var symbolData = entry.Value;
// Update trade direction based on updated data
if (slice.ContainsKey(symbolData.datasetSymbol) && slice[symbolData.datasetSymbol] != null)
{
var sentiment = slice[symbolData.datasetSymbol].Sentiment;
symbolData.Update(sentiment);
}
// Ensure we have security data in the current slice to avoid stale fill
if (!(slice.ContainsKey(symbol) && slice[symbol] != null))
{
continue;
}
// Buy if sentiment increase, liquidate otherwise to ride on the popularity of the equity
if (symbolData.targetDirection == InsightDirection.Up != algorithm.Portfolio[symbol].Invested)
{
insights.Add(Insight.Price(symbol, TimeSpan.FromDays(365), symbolData.targetDirection));
}
}
return insights;
}
public override void OnSecuritiesChanged(QCAlgorithm algorithm, SecurityChanges changes)
{
foreach (var security in changes.AddedSecurities)
{
var symbol = security.Symbol;
_symbolDataBySymbol.Add(symbol, new SymbolData(algorithm, symbol));
}
foreach (var security in changes.RemovedSecurities)
{
var symbol = security.Symbol;
if (_symbolDataBySymbol.ContainsKey(symbol))
{
_symbolDataBySymbol[symbol].dispose();
_symbolDataBySymbol.Remove(symbol);
}
}
}
}
public class SymbolData
{
public Symbol datasetSymbol;
public InsightDirection targetDirection = InsightDirection.Flat;
private QCAlgorithm _algorithm;
private decimal? _latestSentimentValue = null;
public SymbolData(QCAlgorithm algorithm, Symbol symbol)
{
_algorithm = algorithm;
// Requesting the processed longer term (30-day) sentiment score data for sentiment trading
datasetSymbol = algorithm.AddData<BrainSentimentIndicator30Day>(symbol).Symbol;
// Historical data
var history = algorithm.History<BrainSentimentIndicator30Day>(datasetSymbol, 100, Resolution.Daily);
if (history.Count() == 0)
{
return;
}
// Warm up historical sentiment values, cache for comparing last sentiment score to trade, making it immediately tradable signal
var previousSentimentValues = history.Select(x => x.Sentiment);
foreach (var sentiment in previousSentimentValues)
{
Update(sentiment);
}
}
public void dispose()
{
// Unsubscribe from the Brain Sentiment feed for this security to release computational resources
_algorithm.RemoveSecurity(datasetSymbol);
}
public void Update(decimal sentiment)
{
// Comparing the last sentiment score and decide to buy if the sentiment increases to ride the popularity
if (_latestSentimentValue != null)
{
targetDirection = sentiment > _latestSentimentValue ? InsightDirection.Up : InsightDirection.Flat;
}
_latestSentimentValue = sentiment;
}
}
Research Example
The following example lists US Equities having the highest 7-day sentiment.
#r "../QuantConnect.DataSource.BrainSentiment.dll"
using QuantConnect.DataSource;
var qb = new QuantBook();
// Requesting data
var aapl = qb.AddEquity("AAPL", Resolution.Daily).Symbol;
var symbol = qb.AddData<BrainSentimentIndicator30Day>(aapl).Symbol;
// Historical data
var history = qb.History<BrainSentimentIndicator30Day>(symbol, 30, Resolution.Daily);
foreach (BrainSentimentIndicator30Day sentiment in history)
{
Console.WriteLine($"{sentiment} at {sentiment.EndTime}");
}
// Add Universe Selection
IEnumerable<Symbol> UniverseSelection(IEnumerable<BaseData> altCoarse)
{
return (from d in altCoarse.OfType<BrainSentimentIndicatorUniverse>()
orderby d.Sentiment7Days descending select d.Symbol).Take(10);
}
var universe = qb.AddUniverse<BrainSentimentIndicatorUniverse>(UniverseSelection);
// Historical Universe data
var universeHistory = qb.UniverseHistory(universe, qb.Time.AddDays(-5), qb.Time);
foreach (var sentiments in universeHistory)
{
foreach (BrainSentimentIndicatorUniverse sentiment in sentiments)
{
Console.WriteLine($"{sentiment.Symbol} 7-day sentiment at {sentiment.EndTime}: {sentiment.Sentiment7Days}");
}
} qb = QuantBook()
# Requesting Data
aapl = qb.add_equity("AAPL", Resolution.DAILY).symbol
symbol = qb.add_data(BrainSentimentIndicator30Day, aapl).symbol
# Historical data
history = qb.history(BrainSentimentIndicator30Day, symbol, 30, Resolution.DAILY)
for (symbol, time), row in history.iterrows():
print(f"{symbol} sentiment at {time}: {row['sentiment']}")
# Add Universe Selection
def universe_selection(alt_coarse: List[BrainSentimentIndicatorUniverse]) -> List[Symbol]:
return [d.symbol for d in sorted([x for x in alt_coarse if x.SentimentalArticleMentions7Days],
key=lambda x: x.SentimentalArticleMentions7Days, reverse=True)[:10]]
universe = qb.add_universe(BrainSentimentIndicatorUniverse, universe_selection)
# Historical Universe data
universe_history = qb.universe_history(universe, qb.time-timedelta(5), qb.time)
for (_, time), sentiments in universe_history.items():
for sentiment in sentiments:
print(f"{sentiment.symbol} 7-day sentiment at {sentiment.end_time}: {sentiment.SentimentalArticleMentions7Days}")
Data Point Attributes
The Brain Sentiment Indicator dataset provides BrainSentimentIndicatorBase and BrainSentimentIndicatorUniverse objects.
BrainSentimentIndicatorBase Attributes
BrainSentimentIndicatorBase objects have the following attributes:
BrainSentimentIndicatorUniverse Attributes
BrainSentimentIndicatorUniverse objects have the following attributes: