Quiver Quantitative

Insider Trading

Introduction

Corporate insiders are required to disclose purchases or sales of their own stock within two business days of when they occur. Using these disclosures, we collect data on insider trading activity, which can give hints on whether executives are bullish or bearish on their own companies. Here is a blog that we did on this dataset: https://www.quiverquant.com/blog/081121

This dataset depends on the US Equity Security Master dataset because the US Equity Security Master dataset contains information on splits, dividends, and symbol changes.

For more information about the Insider Trading dataset, including CLI commands and pricing, see the dataset listing.

About the Provider

Quiver Quantitative was founded by two college students in February 2020 with the goal of bridging the information gap between Wall Street and non-professional investors. Quiver allows retail investors to tap into the power of big data and have access to actionable, easy to interpret data that hasn’t already been dissected by Wall Street.

Getting Started

The following snippet demonstrates how to request data from the Insider Trading dataset:

from QuantConnect.DataSource import *

aapl = self.AddEquity("AAPL", Resolution.Daily).Symbol
self.quiver_insider_trading_symbol = self.AddData(QuiverInsiderTradings, aapl).Symbol
self.AddUniverse(QuiverInsiderTradingUniverse, "QuiverInsiderTradingUniverse", Resolution.Daily, self.UniverseSelection)
using QuantConnect.DataSource;

var aapl = AddEquity("AAPL", Resolution.Daily).Symbol;
var quiverInsiderTradingSymbol = AddData<QuiverInsiderTradings>(aapl).Symbol;
AddUniverse<QuiverInsiderTradingUniverse>("QuiverInsiderTradingUniverse", Resolution.Daily, UniverseSelectionFilter);

Data Summary

The following table describes the dataset properties:

PropertyValue
Start Date25 April 2014
Asset Coverage4994 US Equities
Data DensitySparse
ResolutionDaily
TimezoneUTC

Data Point Attributes

The Insider Trading dataset provides QuiverInsiderTrading objects encapsulated in a QuiverInsiderTradings object, and QuiverInsiderTradingUniverse object.

QuiverInsiderTradings

QuiverInsiderTradings objects have the following attributes:

QuiverInsiderTrading

QuiverInsiderTrading objects have the following attributes:

QuiverInsiderTradingUniverse

QuiverInsiderTradingUniverse objects have the following attributes:

Requesting Data

To add Insider Trading data to your algorithm, call the AddData method. Save a reference to the dataset Symbol so you can access the data later in your algorithm.

class QuiverInsiderTradingDataAlgorithm(QCAlgorithm):
    def Initialize(self) -> None:
        self.SetStartDate(2019, 1, 1)
        self.SetEndDate(2020, 6, 1)
        self.SetCash(100000)

        self.symbol = self.AddEquity("AAPL", Resolution.Daily).Symbol
        self.dataset_symbol = self.AddData(QuiverInsiderTradings, self.symbol).Symbol
namespace QuantConnect.Algorithm.CSharp.AltData
{
    public class QuiverInsiderTradingDataAlgorithm: QCAlgorithm
    {
        private Symbol _symbol, _datasetSymbol;

        public override void Initialize()
        {
            SetStartDate(2019, 1, 1);
            SetEndDate(2020, 6, 1);
            SetCash(100000);
            _symbol = AddEquity("AAPL", Resolution.Daily).Symbol;
            _datasetSymbol= AddData<QuiverInsiderTradings>(_symbol).Symbol;
        }
    }
}

Accessing Data

To get the current Insider Trading data, index the current Slice with the dataset Symbol. Slice objects deliver unique events to your algorithm as they happen, but the Slice may not contain data for your dataset at every time step. To avoid issues, check if the Slice contains the data you want before you index it.

def OnData(self, slice: Slice) -> None:
    if slice.ContainsKey(self.dataset_symbol):
        data_points = slice[self.dataset_symbol]
        for data_point in data_points:
            self.Log(f"{self.dataset_symbol} shares at {slice.Time}: {data_point.Shares}")
public override void OnData(Slice slice)
{
    if (slice.ContainsKey(_datasetSymbol))
    {
        var dataPoints = slice[_datasetSymbol];
        foreach (QuiverInsiderTrading dataPoint in dataPoints)
        {
            Log($"{_datasetSymbol} shares at {slice.Time}: {dataPoint.Shares}");
        }
    }
}

To iterate through all of the dataset objects in the current Slice, call the Get method.

def OnData(self, slice: Slice) -> None:
    for dataset_symbol, data_points in slice.Get(QuiverInsiderTradings).items():
        for data_point in data_points:
            self.Log(f"{dataset_symbol} shares at {slice.Time}: {data_point.Shares}")
public override void OnData(Slice slice)
{
    foreach (var kvp in slice.Get<QuiverInsiderTradings>())
    {
        var datasetSymbol = kvp.Key;
        var dataPoints = kvp.Value;
        foreach(QuiverInsiderTrading dataPoint in dataPoints)
        {
            Log($"{datasetSymbol} shares at {slice.Time}: {dataPoint.Shares}");
        }
    }
}

Historical Data

To get historical Insider Trading data, call the History method with the dataset Symbol. If there is no data in the period you request, the history result is empty.

# DataFrame
history_df = self.History(self.dataset_symbol, 100, Resolution.Daily)

# Dataset objects
self.History[QuiverInsiderTradings](self.dataset_symbol, 100, Resolution.Daily)
var history = History<QuiverInsiderTradings>(_datasetSymbol, 100, Resolution.Daily);

For more information about historical data, see History Requests.

Universe Selection

To select a dynamic universe of US Equities based on Insider Trading data, call the AddUniverse method with the QuiverInsiderTradingUniverse class and a selection function.

self.AddUniverse(QuiverInsiderTradingUniverse, "QuiverInsiderTradingUniverse", Resolution.Daily, self.UniverseSelection)

def UniverseSelection(self, alt_coarse: List[QuiverInsiderTradingUniverse]) -> List[Symbol]:
    insider_trading_data_by_symbol = {}

    for datum in alt_coarse:
        symbol = datum.Symbol
        
        if symbol not in insider_trading_data_by_symbol:
            insider_trading_data_by_symbol[symbol] = []
        insider_trading_data_by_symbol[symbol].append(datum)
    
    return [symbol for symbol, d in insider_trading_data_by_symbol.items()
            if len([x for x in d if x.Direction == OrderDirection.Buy]) >= 3]
AddUniverse<QuiverInsiderTradingUniverse>("QuiverInsiderTradingUniverse", Resolution.Daily, altCoarse =>
{
    var insiderTradingDataBySymbol = new Dictionary<Symbol, List<QuiverInsiderTradingUniverse>>();

    foreach (var datum in altCoarse)
    {
        var symbol = datum.Symbol;

        if (!insiderTradingDataBySymbol.ContainsKey(symbol))
        {
            insiderTradingDataBySymbol.Add(symbol, new List<QuiverInsiderTradingUniverse>());
        }
        insiderTradingDataBySymbol[symbol].Add(datum);
    }

    return from kvp in insiderTradingDataBySymbol
           where kvp.Value.Where(x => x.Direction == OrderDirection.Buy) >= 3
           select kvp.Key;
});

Remove Subscriptions

To remove a subscription, call the RemoveSecurity method.

self.RemoveSecurity(self.dataset_symbol)
RemoveSecurity(_datasetSymbol);

If you subscribe to Insider Trading data for assets in a dynamic universe, remove the dataset subscription when the asset leaves your universe. To view a common design pattern, see Track Security Changes.

Example Applications

The Quiver Quantitative Insider Trading dataset enables researchers to create strategies using the latest information on insider trading activity. Examples include:

  • Taking a short position in securities that have had the most insider selling over the last 5 days
  • Buying any security that has had over $100,000 worth of shares purchased by insiders in the last month

You can also see our Videos. You can also get in touch with us via Discord.

Did you find this page helpful?

Contribute to the documentation: