Supported Indicators
Log Return
Introduction
This indicator represents the LogReturn indicator (LOGR) - log returns are useful for identifying price convergence/divergence in a given period - logr = log (current price / last price in period)
To view the implementation of this indicator, see the LEAN GitHub repository.
Using LOGR Indicator
To create an automatic indicators for LogReturn
, call the LOGR
helper method from the QCAlgorithm
class. The LOGR
method creates a LogReturn
object, hooks it up for automatic updates, and returns it so you can used it in your algorithm. In most cases, you should call the helper method in the Initialize
method.
public class LogReturnAlgorithm : QCAlgorithm { private Symbol _symbol; private LogReturn _logr; public override void Initialize() { _symbol = AddEquity("SPY", Resolution.Daily).Symbol; _logr = LOGR(_symbol, 20); } public override void OnData(Slice data) { if (_logr.IsReady) { // The current value of _logr is represented by itself (_logr) // or _logr.Current.Value Plot("LogReturn", "logr", _logr); } } }
class LogReturnAlgorithm(QCAlgorithm): def Initialize(self) -> None: self.symbol = self.AddEquity("SPY", Resolution.Daily).Symbol self.logr = self.LOGR(self.symbol, 20) def OnData(self, slice: Slice) -> None: if self.logr.IsReady: # The current value of self.logr is represented by self.logr.Current.Value self.Plot("LogReturn", "logr", self.logr.Current.Value)
The following reference table describes the LOGR
method:
LOGR()1/1
LogReturn QuantConnect.Algorithm.QCAlgorithm.LOGR (Symbol
symbol,Int32
period,*Nullable<Resolution>
resolution,*Func<IBaseData, Decimal>
selector )
Creates a new LogReturn indicator.
If you don't provide a resolution, it defaults to the security resolution. If you provide a resolution, it must be greater than or equal to the resolution of the security. For instance, if you subscribe to hourly data for a security, you should update its indicator with data that spans 1 hour or longer.
For more information about the selector argument, see Alternative Price Fields.
For more information about plotting indicators, see Plotting Indicators.
You can manually create a LogReturn
indicator, so it doesn't automatically update. Manual indicators let you update their values with any data you choose.
Updating your indicator manually enables you to control when the indicator is updated and what data you use to update it. To manually update the indicator, call the Update
method with time/number pair, or an IndicatorDataPoint
. The indicator will only be ready after you prime it with enough data.
public class LogReturnAlgorithm : QCAlgorithm { private Symbol _symbol; private LogReturn _logr; public override void Initialize() { _symbol = AddEquity("SPY", Resolution.Daily).Symbol; _logr = new LogReturn(20); } public override void OnData(Slice data) { if (data.Bars.TryGeValue(_symbol, out var bar)) { _logr.Update(bar.EndTime, bar.Close); } if (_logr.IsReady) { // The current value of _logr is represented by itself (_logr) // or _logr.Current.Value Plot("LogReturn", "logr", _logr); } } }
class LogReturnAlgorithm(QCAlgorithm): def Initialize(self) -> None: self.symbol = self.AddEquity("SPY", Resolution.Daily).Symbol self.logr = LogReturn(20) def OnData(self, slice: Slice) -> None: bar = slice.Bars.get(self.symbol) if bar: self.logr.Update(bar.EndTime, bar.Close) if self.logr.IsReady: # The current value of self.logr is represented by self.logr.Current.Value self.Plot("LogReturn", "logr", self.logr.Current.Value)
To register a manual indicator for automatic updates with the security data, call the RegisterIndicator
method.
public class LogReturnAlgorithm : QCAlgorithm { private Symbol _symbol; private LogReturn _logr; public override void Initialize() { _symbol = AddEquity("SPY", Resolution.Daily).Symbol; _logr = new LogReturn(20); RegisterIndicator(_symbol, _logr, Resolution.Daily); } public override void OnData(Slice data) { if (_logr.IsReady) { // The current value of _logr is represented by itself (_logr) // or _logr.Current.Value Plot("LogReturn", "logr", _logr); } } }
class LogReturnAlgorithm(QCAlgorithm): def Initialize(self) -> None: self.symbol = self.AddEquity("SPY", Resolution.Daily).Symbol self.logr = LogReturn(20) self.RegisterIndicator(self.symbol, self.logr, Resolution.Daily) def OnData(self, slice: Slice) -> None: if self.logr.IsReady: # The current value of self.logr is represented by self.logr.Current.Value self.Plot("LogReturn", "logr", self.logr.Current.Value)
The following reference table describes the LogReturn
constructor:
LogReturn()1/2
LogReturn QuantConnect.Indicators.LogReturn (string
name,int
period )
Initializes a new instance of the LogReturn class with the specified name and period.
LogReturn()2/2
LogReturn QuantConnect.Indicators.LogReturn (
int
period
)
Initializes a new instance of the LogReturn class with the default name and period.
Visualization
The following image shows plot values of selected properties of LogReturn
using the plotly library.
