Option Strategies
Long Call Butterfly
Introduction
The long call butterfly strategy is the combination of a bull call spread and a bear call spread. In the call butterfly, all of the calls should have the same underlying Equity, the same expiration date, and the same strike price distance between the ITM-ATM and OTM-ATM call pairs. The long call butterfly consists of a long ITM call, a long OTM call, and 2 short ATM calls. This strategy profits from low volatility in the underlying Equity price.
Implementation
Follow these steps to implement the long call butterfly strategy:
- In the
Initializeinitializemethod, set the start date, end date, cash, and Option universe. - In the
OnDataon_datamethod, select the contracts of the strategy legs. - In the
OnDataon_datamethod, place the orders.
private Symbol _symbol;
public override void Initialize()
{
SetStartDate(2024, 9, 1);
SetEndDate(2024, 12, 31);
SetCash(500000);
UniverseSettings.Asynchronous = true;
var option = AddOption("GOOG", Resolution.Minute);
_symbol = option.Symbol;
option.SetFilter(universe => universe.IncludeWeeklys().CallButterfly(30, 5));
} def initialize(self) -> None:
self.set_start_date(2024, 9, 1)
self.set_end_date(2024, 12, 31)
self.set_cash(500000)
self.universe_settings.asynchronous = True
option = self.add_option("GOOG", Resolution.MINUTE)
self._symbol = option.symbol
option.set_filter(lambda universe: universe.include_weeklys().call_butterfly(30, 5))
The CallSpreadcall_spread filter narrows the universe down to just the three contracts you need to form a long call butterfly.
public override void OnData(Slice slice)
{
if (Portfolio.Invested ||
!slice.OptionChains.TryGetValue(_symbol, out var chain))
{
return;
}
// Select the call Option contracts with the furthest expiry
var expiry = chain.Max(x =x> x.Expiry);
var calls = chain.Where(x => x.Expiry == expiry && x.Right == OptionRight.Call);
if (calls.Count() == 0) return;
// Select the ATM, ITM and OTM contracts from the remaining contracts
var atmCall = calls.OrderBy(x => Math.Abs(x.Strike - chain.Underlying.Price)).First();
var itmCall = calls.OrderBy(x => x.Strike).SkipLast(1).Last();
var otmCall = calls.Single(x => x.Strike == atmCall.Strike * 2 - itmCall.Strike); def on_data(self, slice: Slice) -> None:
if self.portfolio.invested:
return
# Get the OptionChain.
chain = slice.option_chains.get(self._symbol, None)
if not chain:
return
# Get the furthest expiry date of the contracts.
expiry = max([x.expiry for x in chain])
# Select the call Option contracts with the furthest expiry.
calls = [i for i in chain if i.expiry == expiry and i.right == OptionRight.CALL]
if len(calls) == 0:
return
# Select the target contracts.
atm_call = sorted(calls, key=lambda x: abs(x.strike - chain.underlying.price))[0]
itm_call = sorted(calls, key=lambda x: x.strike)[-2]
otm_call = [x for x in calls if x.strike == atm_call.strike * 2 - itm_call.strike][0]
Approach A: Call the OptionStrategies.ButterflyCallOptionStrategies.butterfly_call method with the details of each leg and then pass the result to the Buybuy method.
var optionStrategy = OptionStrategies.ButterflyCall(_symbol, itmCall.Strike, atmCall.Strike, otmCall.Strike, expiry); Buy(optionStrategy, 1);
option_strategy = OptionStrategies.butterfly_call(self._symbol, itm_call.strike, atm_call.strike, otm_call.strike, expiry) self.buy(option_strategy, 1)
Approach B: Create a list of Leg objects and then call the Combo Market Ordercombo_market_order, Combo Limit Ordercombo_limit_order, or Combo Leg Limit Ordercombo_leg_limit_order method.
var legs = new List<Leg>()
{
Leg.Create(atmCall.Symbol, -2),
Leg.Create(itmCall.Symbol, 1),
Leg.Create(otmCall.Symbol, 1)
};
ComboMarketOrder(legs, 1); legs = [
Leg.create(atm_call.symbol, -2),
Leg.create(itm_call.symbol, 1),
Leg.create(otm_call.symbol, 1)
]
self.combo_market_order(legs, 1)
Strategy Payoff
The long call butterfly is a limited-reward-limited-risk strategy. The payoff is
$$ \begin{array}{rcll} C^{OTM}_T & = & (S_T - K^{OTM})^{+}\\ C^{ITM}_T & = & (S_T - K^{ITM})^{+}\\ C^{ATM}_T & = & (S_T - K^{ATM})^{+}\\ P_T & = & (C^{OTM}_T + C^{ITM}_T - 2\times C^{ATM}_T + 2\times C^{ATM}_0 - C^{ITM}_0 - C^{OTM}_0)\times m - fee\\ \end{array} $$ $$ \begin{array}{rcll} \textrm{where} & C^{OTM}_T & = & \textrm{OTM call value at time T}\\ & C^{ITM}_T & = & \textrm{ITM call value at time T}\\ & C^{ATM}_T & = & \textrm{ATM call value at time T}\\ & S_T & = & \textrm{Underlying asset price at time T}\\ & K^{OTM} & = & \textrm{OTM call strike price}\\ & K^{ITM} & = & \textrm{ITM call strike price}\\ & K^{ATM} & = & \textrm{ATM call strike price}\\ & P_T & = & \textrm{Payout total at time T}\\ & C^{ITM}_0 & = & \textrm{ITM call value at position opening (debit paid)}\\ & C^{OTM}_0 & = & \textrm{OTM call value at position opening (debit paid)}\\ & C^{ATM}_0 & = & \textrm{OTM call value at position opening (credit received)}\\ & m & = & \textrm{Contract multiplier}\\ & T & = & \textrm{Time of expiration} \end{array} $$The following chart shows the payoff at expiration:
The maximum profit is $K^{ATM} - K^{ITM} + 2\times C^{ATM}_0 - C^{ITM}_0 - C^{OTM}_0$. It occurs when the underlying price is the same price at expiration as it was when opening the position and the payouts of the bull and bear call spreads are at their maximum.
The maximum loss is the net debit paid: $2\times C^{ATM}_0 - C^{ITM}_0 - C^{OTM}_0$. It occurs when the underlying price is less than ITM strike or greater than OTM strike at expiration.
If the Option is American Option, there is a risk of early assignment on the contracts you sell.
Example
The following table shows the price details of the assets in the long call butterfly:
| Asset | Price ($) | Strike ($) |
|---|---|---|
| OTM call | 4.90 | 767.50 |
| ATM call | 15.00 | 800.00 |
| ITM call | 41.00 | 832.50 |
| Underlying Equity at expiration | 829.08 | - |
Therefore, the payoff is
$$ \begin{array}{rcll} C^{OTM}_T & = & (S_T - K^{OTM})^{+}\\ & = & (767.50-829.08)^{+}\\ & = & 0\\ C^{ITM}_T & = & (S_T - K^{ITM})^{+}\\ & = & (832.50-829.08)^{+}\\ & = & 3.42\\ C^{ATM}_T & = & (S_T - K^{ATM})^{+}\\ & = & (800.00-829.08)^{+}\\ & = & 0\\ P_T & = & (C^{OTM}_T + C^{ITM}_T - 2\times C^{ATM}_T + 2\times C^{ATM}_0 - C^{ITM}_0 - C^{OTM}_0)\times m - fee\\ & = & (0+3.42-0\times2-4.90-41.00+15.00\times2)\times100-1.00\times4\\ & = & -1252 \end{array} $$So, the strategy loses $1,252.
The following algorithm implements a long call butterfly Option strategy:
public class BearPutSpreadStrategy : QCAlgorithm
{
private Symbol _symbol;
public override void Initialize()
{
SetStartDate(2024, 9, 1);
SetEndDate(2024, 12, 31);
SetCash(500000);
var option = AddOption("GOOG", Resolution.Minute);
_symbol = option.Symbol;
option.SetFilter(universe => universe.IncludeWeeklys().CallButterfly(30, 5));
}
public override void OnData(Slice slice)
{
if (Portfolio.Invested) return;
// Get the OptionChain of the symbol
var chain = slice.OptionChains.get(_symbol, null);
if (chain == null || chain.Count() == 0) return;
// sorted the optionchain by expiration date and choose the furthest date
var expiry = chain.OrderByDescending(x => x.Expiry).First().Expiry;
// filter the call options from the contracts which expire on the furthest expiration date in the option chain.
var calls = chain.Where(x => x.Expiry == expiry && x.Right == OptionRight.Call);
if (calls.Count() == 0) return;
// sort the call options with the same expiration date according to their strike price.
var callStrikes = calls.Select(x => x.Strike).OrderBy(x => x);
// get at-the-money strike
var atmStrike = calls.OrderBy(x => Math.Abs(x.Strike - chain.Underlying.Price)).First().Strike;
// Get the distance between lowest strike price and ATM strike, and highest strike price and ATM strike.
// Get the lower value as the spread distance as equidistance is needed for both side.
var spread = Math.Min(Math.Abs(callStrikes.First() - atmStrike), Math.Abs(callStrikes.Last() - atmStrike));
// select the strike prices for forming the option legs
var itmStrike = atmStrike - spread;
var otmStrike = atmStrike + spread;
var optionStrategy = OptionStrategies.CallButterfly(_symbol, otmStrike, atmStrike, itmStrike, expiry);
// We open a position with 1 unit of the option strategy
Buy(optionStrategy, 1); // if long call butterfly
//Sell(optionStrategy, 1); // if short call butterfly
}
} class LongCallButterflyStrategy(QCAlgorithm):
def initialize(self) -> None:
self.set_start_date(2024, 9, 1)
self.set_end_date(2024, 12, 31)
self.set_cash(500000)
option = self.add_option("GOOG", Resolution.MINUTE)
self.symbol = option.symbol
option.set_filter(self.universe_func)
def universe_func(self, universe: OptionFilterUniverse) -> OptionFilterUniverse:
return universe.include_weeklys().strikes(-15, 15).expiration(timedelta(0), timedelta(31))
def on_data(self, data: Slice) -> None:
# avoid extra orders
if self.portfolio.invested: return
# Get the OptionChain of the self.symbol
chain = data.option_chains.get(self.symbol, None)
if not chain: return
# sorted the optionchain by expiration date and choose the furthest date
expiry = sorted(chain, key = lambda x: x.expiry, reverse=True)[0].expiry
# filter the call options from the contracts which expire on the furthest expiration date in the option chain.
calls = [i for i in chain if i.expiry == expiry and i.right == OptionRight.CALL]
if len(calls) == 0: return
# sort the call options with the same expiration date according to their strike price.
call_strikes = sorted([x.strike for x in calls])
# get at-the-money strike
atm_strike = sorted(calls, key=lambda x: abs(x.strike - chain.underlying.price))[0].strike
# Get the distance between lowest strike price and ATM strike, and highest strike price and ATM strike.
# Get the lower value as the spread distance as equidistance is needed for both side.
spread = min(abs(call_strikes[0] - atm_strike), abs(call_strikes[-1] - atm_strike))
# select the strike prices for forming the option legs
itm_strike = atm_strike - spread
otm_strike = atm_strike + spread
option_strategy = OptionStrategies.call_butterfly(self.symbol, otm_strike, atm_strike, itm_strike, expiry)
# We open a position with 1 unit of the option strategy
self.buy(option_strategy, 1)
# self.sell(option_strategy, 1) if short call butterfly
Other Examples
For more examples, see the following algorithms: