Option Strategies
Bear Put Spread
Introduction
Bear put spread, also known as short put spread, consists of buying an ITM put and selling an OTM put. Both puts have the same underlying Equity and the same expiration date. The OTM put serves as a hedge for the ITM put. The bear put spread profits from a decline in underlying asset price.
Implementation
Follow these steps to implement the bear put spread strategy:
- In the
Initialize
method, set the start date, end date, cash, and Option universe. - In the
OnData
method, select the expiration and strikes of the contracts in the strategy legs. - In the
OnData
method, call theOptionStrategies.BearPutSpread
method and then submit the order.
private Symbol _symbol; public override void Initialize() { SetStartDate(2017, 2, 1); SetEndDate(2017, 3, 5); SetCash(500000); var option = AddOption("GOOG", Resolution.Minute); _symbol = option.Symbol; option.SetFilter(universe => universe.IncludeWeeklys() .Strikes(-15, 15) .Expiration(TimeSpan.FromDays(0), TimeSpan.FromDays(31))); }
def Initialize(self) -> None: self.SetStartDate(2017, 2, 1) self.SetEndDate(2017, 3, 5) self.SetCash(500000) option = self.AddOption("GOOG", Resolution.Minute) self.symbol = option.Symbol option.SetFilter(self.UniverseFunc) def UniverseFunc(self, universe: OptionFilterUniverse) -> OptionFilterUniverse: return universe.IncludeWeeklys().Strikes(-15, 15).Expiration(timedelta(0), timedelta(31))
public override void OnData(Slice slice) { if (Portfolio.Invested) return; // Get the OptionChain var chain = slice.OptionChains.get(_symbol, null); if (chain.Count() == 0) return; // Get the furthest expiry date of the contracts var expiry = chain.OrderByDescending(x => x.Expiry).First().Expiry; // Select the put Option contracts with the furthest expiry var puts = chain.Where(x => x.Expiry == expiry && x.Right == OptionRight.Put); if (puts.Count() == 0) return; // Select the ITM and OTM contract strike prices from the remaining contracts var putStrikes = puts.Select(x => x.Strike).OrderBy(x => x); var itmStrike = putStrikes.Last(); var otmStrike = putStrikes.First();
def OnData(self, slice: Slice) -> None: if self.Portfolio.Invested: return # Get the OptionChain chain = slice.OptionChains.get(self.symbol, None) if not chain: return # Get the furthest expiry date of the contracts expiry = sorted(chain, key = lambda x: x.Expiry, reverse=True)[0].Expiry # Select the put Option contracts with the furthest expiry puts = [i for i in chain if i.Expiry == expiry and i.Right == OptionRight.Put] if len(puts) == 0: return # Select the ITM and OTM contract strike prices from the remaining contracts put_strikes = sorted([x.Strike for x in puts]) otm_strike = put_strikes[0] itm_strike = put_strikes[-1]
var optionStrategy = OptionStrategies.BearPutSpread(_symbol, itmStrike, otmStrike, expiry); Buy(optionStrategy, 1);
option_strategy = OptionStrategies.BearPutSpread(self.symbol, itm_strike, otm_strike, expiry) self.Buy(option_strategy, 1)
Option strategies synchronously execute by default. To asynchronously execute Option strategies, set the asynchronous
argument to False
false
. You can also provide a tag and order properties to the
Buy
methods.
Buy(optionStrategy, quantity, asynchronous, tag, orderProperties);
self.Buy(option_strategy, quantity, asynchronous, tag, order_properties)
Strategy Payoff
The bear put spread is a limited-reward-limited-risk strategy. The payoff is
$$ \begin{array}{rcll} P^{OTM}_T & = & (K^{OTM} - S_T)^{+}\\ P^{ITM}_T & = & (K^{ITM} - S_T)^{+}\\ P_T & = & (P^{ITM}_T - P^{OTM}_T + P^{OTM}_0 - P^{ITM}_0)\times m - fee\\ \end{array} $$ $$ \begin{array}{rcll} \textrm{where} & P^{OTM}_T & = & \textrm{OTM put value at time T}\\ & P^{ITM}_T & = & \textrm{ITM put value at time T}\\ & S_T & = & \textrm{Underlying asset price at time T}\\ & K^{OTM} & = & \textrm{OTM put strike price}\\ & K^{ITM} & = & \textrm{ITM put strike price}\\ & P_T & = & \textrm{Payout total at time T}\\ & P^{ITM}_0 & = & \textrm{ITM put value at position opening (debit paid)}\\ & P^{OTM}_0 & = & \textrm{OTM put value at position opening (credit received)}\\ & m & = & \textrm{Contract multiplier}\\ & T & = & \textrm{Time of expiration} \end{array} $$The following chart shows the payoff at expiration:

The maximum profit is $K^{ITM} - K^{OTM} + P^{OTM}_0 - P^{ITM}_0$. If the underlying price is below than the strike prices of both put Option contracts, they are worth $(K - S_T)$ at expiration.
The maximum loss is the net debit you paid to open the position, $P^{OTM}_0 - P^{ITM}_0$.
If the Option is American Option, there is a risk of early assignment on the sold contract.
Example
The following table shows the price details of the assets in the algorithm:
Asset | Price ($) | Strike ($) |
---|---|---|
OTM put | 4.60 | 767.50 |
ITM put | 40.00 | 835.00 |
Underlying Equity at expiration | 829.08 | - |
Therefore, the payoff is
$$ \begin{array}{rcll} P^{OTM}_T & = & (K^{OTM} - S_T)^{+}\\ & = & (767.50-829.08)^{+}\\ & = & 0\\ P^{ITM}_T & = & (K^{ITM} - S_T)^{+}\\ & = & (835.00-829.08)^{+}\\ & = & 5.92\\ P_T & = & (P^{ITM}_T - P^{OTM}_T + P^{OTM}_0 - P^{ITM}_0)\times m - fee\\ & = & (5.92-0+4.60-40.00)\times100-1.00\times2\\ & = & -2950\\ \end{array} $$So, the strategy losses $2,950.
The following algorithm implements a bear put spread strategy: