QuantConnect
FOREX Data
Introduction
The FOREX Data by QuantConnect serves 71 foreign exchange (FOREX) pairs, starts on various dates from January 2007, and is delivered on any frequency from tick to daily. This dataset is created by QuantConnect processing raw tick data from OANDA.
FOREX data does not include ask and bid sizes.
For more information about the FOREX Data dataset, including CLI commands and pricing, see the dataset listing.
About the Provider
QuantConnect was founded in 2012 to serve quants everywhere with the best possible algorithmic trading technology. Seeking to disrupt a notoriously closed-source industry, QuantConnect takes a radically open-source approach to algorithmic trading. Through the QuantConnect web platform, more than 50,000 quants are served every month.
Data Summary
The following table describes the dataset properties:
Property | Value |
---|---|
Start Date | January 2007 |
Asset Coverage | 71 Currency pairs |
Data Density | Dense |
Resolution | Tick, Second, Minute, Hour, & Daily |
Timezone | UTC |
Market Hours | Always Open, except from Friday 5 PM EST to Sunday 5 PM EST |
Requesting Data
To add FOREX data to your algorithm, call the AddForex
add_forex
method. Save a reference to the Forex Symbol
so you can access the data later in your algorithm.
class ForexAlgorithm (QCAlgorithm): def initialize(self) -> None: self.set_start_date(2019, 2, 20) self.set_end_date(2019, 2, 21) self.set_cash(100000) self.eurusd = self.add_forex('EURUSD', Resolution.MINUTE).symbol self.set_benchmark(self.eurusd)
namespace QuantConnect.Algorithm.CSharp { public class ForexAlgorithm : QCAlgorithm { private Symbol _symbol; public override void Initialize() { SetStartDate(2019, 2, 20); SetEndDate(2019, 2, 21); SetCash(100000); _symbol = AddForex("EURUSD", Resolution.Minute).Symbol; SetBenchmark(_symbol); } } }
For more information about creating Forex subscriptions, see Requesting Data.
Accessing Data
To get the current Forex data, index the QuoteBars
quote_bars
, or Ticks
ticks
properties of the current Slice
with the Forex Symbol
. Slice objects deliver unique events to your algorithm as they happen, but the Slice
may not contain data for your security at every time step. To avoid issues, check if the Slice
contains the data you want before you index it.
def on_data(self, slice: Slice) -> None: if self.eurusd in slice.quote_bars: quote_bar = slice.quote_bars[self.eurusd] self.log(f"{self.eurusd} bid at {slice.time}: {quote_bar.bid.close}") if self.eurusd in slice.ticks: ticks = slice.ticks[self.eurusd] for tick in ticks: self.log(f"{self.eurusd} price at {slice.time}: {tick.price}")
public override void OnData(Slice slice) { if (slice.QuoteBars.ContainsKey(_symbol)) { var quoteBar = slice.QuoteBars[_symbol]; Log($"{_symbol} bid at {slice.Time}: {quoteBar.Bid.Close}"); } if (slice.Ticks.ContainsKey(_symbol)) { var ticks = slice.Ticks[_symbol]; foreach (var tick in ticks) { Log($"{_symbol} price at {slice.Time}: {tick.Price}"); } } }
You can also iterate through all of the data objects in the current Slice
.
def on_data(self, slice: Slice) -> None: for symbol, quote_bar in slice.quote_bars.items(): self.log(f"{symbol} bid at {slice.time}: {quote_bar.bid.close}") for symbol, ticks in slice.ticks.items(): for tick in ticks: self.log(f"{symbol} price at {slice.time}: {tick.price}")
public override void OnData(Slice slice) { foreach (var kvp in slice.QuoteBars) { var symbol = kvp.Key; var quoteBar = kvp.Value; Log($"{symbol} bid at {slice.Time}: {quoteBar.Bid.Close}"); } foreach (var kvp in slice.Ticks) { var symbol = kvp.Key; var ticks = kvp.Value; foreach (var tick in ticks) { Log($"{symbol} price at {slice.Time}: {tick.Price}"); } } }
For more information about accessing Forex data, see Handling Data.
Historical Data
To get historical Forex data, call the History
history
method with the Forex Symbol
. If there is no data in the period you request, the history result is empty.
# DataFrame history_df = self.history(self.eurusd, 100, Resolution.MINUTE) # QuoteBar objects history_quote_bars = self.history[QuoteBar](self.eurusd, 100, Resolution.MINUTE) # Tick objects history_ticks = self.history[Tick](self.eurusd, timedelta(seconds=10), Resolution.TICK)
// QuoteBar objects var historyQuoteBars = History<QuoteBar>(_symbol, 100, Resolution.Minute); // Tick objects var historyTicks = History<Tick>(_symbol, TimeSpan.FromSeconds(10), Resolution.Tick);
For more information about historical data, see History Requests.
Example Applications
The FOREX price data enables you to trade currency pairs in the global market. Examples include the following strategies:
- Exploring the impact that daily worldwide news cycles have on international currencies
- Carry Trade: borrow from a lower interest currency pair to fund the purchase of a currency pair with a higher interest rate
Classic Algorithm Example
The following example algorithm implements a FOREX carry trade. It buys the FOREX pair of the country with the lowest interest rate and sells the FOREX pair of the country with the highest interest rate.
from AlgorithmImports import * from QuantConnect.DataSource import * class ForexCarryTradeAlgorithm(QCAlgorithm): def initialize(self) -> None: self.set_start_date(2008, 1, 1) self.set_cash(25000) # We will use hard-coded interest rates for each base currency self.rates = { "USDAUD": 1.5, # Australia "USDCAD": 0.5, # Canada "USDCNY": 4.35, # China "USDEUR": 0.0, # Euro Area "USDINR": 6.5, # India "USDJPY": -0.1, # Japan "USDMXN": 4.25, # Mexico "USDTRY": 7.5, # Turkey "USDZAR": 7.0 # South Africa } # Subscribe to forex data for trading for ticker in self.rates: self.add_forex(ticker, Resolution.DAILY) # Use a month counter as variable to control rebalancing self.month = -1 def on_data(self, slice: Slice) -> None: # Monthly rebalance checker if self.month == self.time.month: return self.month = self.time.month # Long the pair with highest interest rate and sell the pair with the lowest to earn the max monetary inflation difference between the two sorted_rates = sorted(self.rates.items(), key = lambda x: x[1]) self.set_holdings(sorted_rates[0][0], -0.5) self.set_holdings(sorted_rates[-1][0], 0.5)
using QuantConnect.DataSource; namespace QuantConnect { public class ForexCarryTradeAlgorithm : QCAlgorithm { // Use a month counter as variable to control rebalancing private int _month = -1; private Dictionary<string, decimal> _rates; public override void Initialize() { SetStartDate(2008, 1, 1); SetCash(25000); // We will use hard-coded interest rates for each base currency _rates = new Dictionary<string, decimal>() { {"USDAUD", 1.5m}, // Australia {"USDCAD", 0.5m}, // Canada {"USDCNY", 4.35m}, // China {"USDEUR", 0.0m}, // Euro Area {"USDINR", 6.5m}, // India {"USDJPY", -0.1m}, // Japan {"USDMXN", 4.25m}, // Mexico {"USDTRY", 7.5m}, // Turkey {"USDZAR", 7.0m} // South Africa }; // Subscribe to forex data for trading foreach (var ticker in _rates.Keys) { AddForex(ticker, Resolution.Daily); } } public override void OnData(Slice slice) { // Monthly rebalance checker if (_month == Time.Month) return; _month = Time.Month; // Long the pair with highest interest rate and sell the pair with the lowest to earn the max monetary inflation difference between the two var sortedRates = (from kvp in _rates orderby kvp.Value ascending select kvp.Key).ToArray(); SetHoldings(sortedRates[0], -0.5); SetHoldings(sortedRates[sortedRates.Length-1], 0.5); } } }
Framework Algorithm Example
The following example algorithm implements a FOREX carry trade. It buys the FOREX pair of the country with the lowest interest rate and sells the FOREX pair of the country with the highest interest rate.
from AlgorithmImports import * from QuantConnect.DataSource import * class ForexCarryTradeAlgorithm(QCAlgorithm): def initialize(self) -> None: self.set_start_date(2008, 1, 1) self.set_cash(25000) def to_symbol(ticker: str) -> Symbol: return Symbol.create(ticker, SecurityType.FOREX, Market.OANDA) # We will use hard-coded interest rates for each base currency rates = { to_symbol("USDAUD"): 1.5, # Australia to_symbol("USDCAD"): 0.5, # Canada to_symbol("USDCNY"): 4.35, # China to_symbol("USDEUR"): 0.0, # Euro Area to_symbol("USDINR"): 6.5, # India to_symbol("USDJPY"): -0.1, # Japan to_symbol("USDMXN"): 4.25, # Mexico to_symbol("USDTRY"): 7.5, # Turkey to_symbol("USDZAR"): 7.0 # South Africa } self.set_universe_selection(ManualUniverseSelectionModel(list(rates.keys()))) # A custom alpha model to emit insight according to interest rate self.set_alpha(IntestRatesAlphaModel(rates)) # Equal size to capitalize the monetary value of quote currency only based on interest rate difference # For dollar-neutral to save margin cost self.set_portfolio_construction(EqualWeightingPortfolioConstructionModel(Expiry.END_OF_MONTH)) class IntestRatesAlphaModel(AlphaModel): def __init__(self, rates: float) -> None: self.rates = rates # Variable to control the rebalancing time self.month = -1 def update(self, algorithm: QCAlgorithm, slice: Slice) -> List[Insight]: # Monthly rebalance if self.month == algorithm.time.month: return [] self.month = algorithm.time.month # # Long the pair with highest interest rate and sell the pair with the lowest to earn the max monetary inflation difference between the two sorted_rates = sorted(self.rates.items(), key = lambda x: x[1]) self.set_holdings(sorted_rates[0][0], -0.5) self.set_holdings(sorted_rates[-1][0], 0.5) sorted_rates = sorted(self.rates.items(), key = lambda x: x[1]) return Insight.group( Insight.price(sorted_rates[0][0], Expiry.END_OF_MONTH, InsightDirection.UP), Insight.price(sorted_rates[-1][0], Expiry.END_OF_MONTH, InsightDirection.DOWN) )
using QuantConnect.DataSource; namespace QuantConnect { public class ForexCarryTradeAlgorithm : QCAlgorithm { public override void Initialize() { SetStartDate(2008, 1, 1); SetCash(25000); Symbol toSymbol(string ticker) { return QuantConnect.Symbol.Create(ticker, SecurityType.Forex, Market.Oanda); } // We will use hard-coded interest rates for each base currency var rates = new Dictionary<Symbol, decimal>() { {toSymbol("USDAUD"), 1.5m}, // Australia {toSymbol("USDCAD"), 0.5m}, // Canada {toSymbol("USDCNY"), 4.35m}, // China {toSymbol("USDEUR"), 0.0m}, // Euro Area {toSymbol("USDINR"), 6.5m}, // India {toSymbol("USDJPY"), -0.1m}, // Japan {toSymbol("USDMXN"), 4.25m}, // Mexico {toSymbol("USDTRY"), 7.5m}, // Turkey {toSymbol("USDZAR"), 7.0m} // South Africa }; SetUniverseSelection(new ManualUniverseSelectionModel(rates.Keys)); // A custom alpha model to emit insight according to interest rate SetAlpha(new IntestRatesAlphaModel(rates)); // Equal size to capitalize the monetary value of quote currency only based on interest rate difference // For dollar-neutral to save margin cost SetPortfolioConstruction(new EqualWeightingPortfolioConstructionModel(Expiry.EndOfMonth)); } } public class IntestRatesAlphaModel : AlphaModel { // Variable to control the rebalancing time private int _month = -1; private Dictionary<Symbol, decimal> _rates; public IntestRatesAlphaModel(Dictionary<Symbol, decimal> rates) { _rates = rates; } public override IEnumerable<Insight> Update(QCAlgorithm algorithm, Slice slice) { // Monthly rebalance if (_month == algorithm.Time.Month) { return Enumerable.Empty<Insight>(); } _month = algorithm.Time.Month; // Long the pair with highest interest rate and sell the pair with the lowest to earn the max monetary inflation difference between the two sorted_rates = sorted(self.rates.items(), key = lambda x: x[1]) self.set_holdings(sorted_rates[0][0], -0.5) self.set_holdings(sorted_rates[-1][0], 0.5) var sortedRates = (from kvp in _rates orderby kvp.Value ascending select kvp.Key).ToArray(); return Insight.Group( Insight.Price(sortedRates[0], Expiry.EndOfMonth, InsightDirection.Up), Insight.Price(sortedRates[sortedRates.Length-1], Expiry.EndOfMonth, InsightDirection.Down) ); } } }